• Sushil Chandra, M-Tech Bio Medical Engineering Department, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi
  • Kundan Lal Verma, MSc Department of Electronics, DDU Gorakhpur University, Gorakhpur, Uttar Pradesh
  • Greeshma Sharma, M-Tech Bio Medical Engineering Department, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi
  • Alok Mittal, Dr. Instrumentaion and Control Engineering Department, Netaji Subhas Institute of Technology, Delhi
  • Devendra Jha, Dr. Scientific Analysis Group, DRDO, Delhi
Keywords: Cognitive Workload, Discrete wavelet transform, EEG spectral feature, Neural Network


The objective of this experiment was to determine the best possible input EEG feature for classification of the workload while designing load balancing logic for an automated operator. The input features compared in this study consisted of spectral features of Electroencephalography, objective scoring and subjective scoring. Method utilizes to identify best EEG feature as an input in Neural Network Classifiers for workload classification, to identify channels which could provide classification with the highest accuracy and for identification of EEG feature which could give discrimination among workload level without adding any classifiers. The result had shown Engagement Index is the best feature for neural network classification.


Download data is not yet available.


Abdul-latif, A. A., Cosic, I., Kumar, D. K., Polus, B., & Da Costa, C. (2004). Power Changes of EEG Signals Associated with Muscle Fatigue: The Root Mean Square Analysis of EEG Bands. Intelligent Sensors Sensor Networks and Information Processing Conference (pp. 531-534).IEEE. doi:10.1109/ISSNIP.2004.1417517

Basmajian, J. V., & De Luca, C. J. (1985). Muscles alive. Muscles alive: their functions revealed by electromyography, 278, 126.

Berka, C., Levendowski, D. J., Lumicao, M. N., Yau, A., Davis, G., Zivkovic, V. T., ... & Craven, P. L. (2007). EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviation, space, and environmental medicine, 78 (Supplement 1), B231-B244.

Dickson, B. T. (2005,). The Cognitive Cockpit-a test-bed for Augmented Cognition. In 1st International Conference on Augmented Cognition, Las Vegas, NV.

Dorneich, M. C., Ververs, P. M., Mathan, S., & Whitlow, S. D. (2005, October). A joint human-automation cognitive system to support rapid decision-making in hostile environments. In Systems, Man and Cybernetics, 2005 IEEE International Conference on (Vol. 3, pp. 2390-2395). IEEE.

Fairclough, S.H., Venables, L., & Tattersall, A. (2005).The influence of task demand on learning on the psychophysiological response. International Journal of Psychophysiology, 56(2), 171-184.

Fairclough, S.H., & Venables, L. (2010). Prediction of subjective states from psychophysiology: a multivariate approach. Biological psychology, 71(1), 100-110.

Freeman, F. G., Mikulka, P. J., Scerbo, M. W., & Scott, L. (2004). An evaluation of an adaptive automation system using a cognitive vigilance task. Biological psychology, 67(3), 283-297.

Gawron, V.J. (2000). Human performance measures handbook. Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers.

Gevins, A., & Smith, M. E. (2003). Neurophysiological measures of cognitive workload during human–computer interaction. Theoretical Issues in Ergonomics Science, 4,113–131.

Gevins, A., & Smith, M. E. (2005). Assessing fitness-for-duty and predicting performance with cognitive neurophysiological measures. In J. A. Caldwell & N. J. Wesensten (Eds.), Proceedings of SPIE Defense and Security Symposium, Biomonitoring for Physiological and Cognitive Performance during Military Operations (pp.127–38). Orlando: The International Society for Optical Engineering.

Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Advances in psychology, 52, 139-183.

Kamzanova, A. T., Matthews, G., Kustubayeva, A. M., & Jakupov, S. M. (2011). EEG Indicesto Time-On-Task Effectsand to a Workload Manipulation (Cueing). World Academy of Science, Engineering and Technology, 80.

Knoll, A., Wang, Y., Chen, F., Xi, J., Ruiz, N., Epps, J., & Zarjam, P. (2011). Measuring CognitiveWorkloadwith Low Cost Electroencephalogram. Human Computer Interaction-Interact, lecture Notes in Computer Sciences, 6949, 568-571.

Kramer, A. F. (1991). Physiological metrics of mental workload. In D. L. Damos (Eds.). Multiple task performance (pp.279-328). London: Taylor & Francis.

Lysaght, R. J., Hill, S. G., Dick, A. O., Plamondon, B. D., & Linton, P. M. (1989). Operator workload: Comprehensive review and evaluation of operator workload methodologies (No. TR-2075-3). ANALYTICS INC WILLOW GROVE PA.

Mazloumi, A., Kumashiro, M., Izumi, H., & Higuchi, Y. (2010). Examining the Influence of Different Attentional Demands and Individuals’ Cognitive Failure on Workload Assessment and Psychological Functioning. International Journal Of Occupational Hygiene, 2(1), 17-24.

Mikulka, P. J., Scerbo, M. W., & Freeman, F. G. (2002).Effects of a biocybernetic system on vigilance performance. Human Factors, 44, 654–64.

Noyes, J. M. & Bruneau, D. P. J. (2007). A self-analysis of the NASA-TLX workload measure. Ergonomics, 50(4), 514 – 519.

Prinzel, L. J., Freeman, F. G., Scerbo, M. W., Mikulka, P. J., & Pope, A. T. (2000). A closed-loop system for examining psychophysiological measures for adaptive task allocation. The International Journal Of Aviation Psychology, 10(4), 393-410.

Reid, G. B., & Nygren, T. E. (1988). The subjective workload assessment technique: A scaling procedure for measuring mental workload. Advances in psychology, 52, 185-218.

Rubio, S., Diaz, E., Martin, J., Puente, J. M. (2004).Evaluation of Subjective Mental Workload: A Comparison of SWAT, NASA-TLX, and Workload Profile Methods. Applied Psychology: An International Review, 53(1), 61–86.

Singh, I. L., Sharma, H., Singh, A. L. (2005). Effect of Training on Workload in Flight Simulation Task Performance. Journal of the Indian Academy of applied Psychology, 31, 83-91.

Singh, A. L., Tiwari, T., Singh, I. L. (2010). Performance Feedback, mental Workload and Monitoring Efficiency. Journal of the Indian Academy of applied Psychology, 36(1), 151-158.

Sun, S. (2008). The extreme energy ratio criterion for EEG feature extraction. In Artificial Neural Networks-ICANN 2008 (pp. 919-928). Springer Berlin Heidelberg.

Sun, L., Chang, G., & Tang, H. (2006). Wavelet Packet. Entropy in the Analysis of EEG Signals. 8th International Conference on Signal Processing (pp.16-20). Beijing: IEEE.doi:10.1109/ICOSP.2006.346140.

Verma, K. L. (2012). EEG correlates of Cognitive Workload during Multitasking Work. Dissertation, University of Gorakhpur. ISBN: 978-3-659-30224-4. Germany, Lambert Academic Publishing.

Wang, Z., Hope, R. M., Wang, Z., Ji, Q., & Gray, W. D. (2011). An EEG Workload Classifier for Multiple Subjects. 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Washington, DC: IEEE Press.

Wickens, C. D. (1988). Processing resources in attention, dual task performance and workload assessment. University of Illinois: Engineering-psychology research laboratory.

Wilson, G. F., & Russell, C. A. (2003). Operator functional state classification using multiple psychophysiological features in an air traffic control task. Human Factors: The Journal of the Human Factors and Ergonomics Society, 45(3), 381-389.

Wilson, G. F., Russell, C. A. (2007). Performance enhancement in an uninhabited air vehicle task using psychophysiologically determined adaptive aiding. Human Factors, 49, 1005-1018.

Wilson, G. F., Estepp, J., & Christensen, J. C. (2010).How does day-to-day variability in psychophysiological data affect classifier accuracy. Human Factors and Ergonomics Society Annual Meeting Proceedings, 54, 264-268.

Wilson, G. F., Estepp, J., & Davis, I. (2009). A comparison of performance and psychophysiological classification of complex task performance. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 53, 141-145. doi: 10.1177/154193120905300301.

Zarjam, P., Epps, J., & Chen, F. (2011). Spectral EEG Features for Evaluating Cognitive Load. 33rd Annual International Conference of the IEEE EMBS (pp. 3841-3844). Boston, Massachusetts USA. doi: 10.1109/IEMBS.2011.6090954

How to Cite
Chandra, S., Lal Verma, K., Sharma, G., Mittal, A., & Jha, D. (2015). EEG BASED COGNITIVE WORKLOAD CLASSIFICATION DURING NASA MATB-II MULTITASKING. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 3(1), 35-41. Retrieved from