
www.ijcrsee.com
55
Cárcamo-Mansilla N., & Aravena-Díaz M. D. (2024). Metacognitive strategies for mathematical modeling with engineering
groups of students: Adaptation and validation of a questionnaire, International Journal of Cognitive Research in Science,
Engineering and Education (IJCRSEE), 12(1), 41-55.
Schukajlow, S., & Krug, A. (2013). Planning, monitoring and multiple solutions while solving modeling problems. In A. M.
Lindmeier & A. Heinze (Eds.), Proceedings of the 37th Conference of the International 4 - 177 Group for the Psychology
of Mathematics Education (pp. 177–184). Kiel, Germany: PME. https://www.researchgate.net/publication/274257874_
PLANNING_MONITORING_AND_MULTIPLE_SOLUTIONS_WHILE_SOLVING_MODELLING_PROBLEMS
Sanabria, T., & Penner, A. (2017). Weeded out? Gendered responses to failing calculus. Social Sciences, 6(2), 47. https://doi.
org/10.3390/socsci6020047
Simons, H. (2013). El estudio de caso: Teoría y práctica. Ediciones Morata, S. L. Madrid
Smith-Doerr, L., Alegria, S. N., & Sacco, T. (2017). How diversity matters in the US science and engineering workforce: A
critical review considering integration in teams, elds, and organizational contexts. Engaging Science, Technology, and
Society, 3, 139-153. https://doi.org/10.17351/ests2017.142
Soon, W., Lioe, L. T., & McInnes, B. (2011). Understanding the difculties faced by engineering undergraduates in learning
mathematical modelling. International Journal of Mathematical Education in Science and Technology, 42(8), 1023–
1039. https://doi.org/10.1080/0020739X.2011.573867
Stillman, G. (2011). Applying Metacognitive Knowledge and Strategies in Applications and Modelling Tasks at Secondary
School. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in Teaching and Learning of Mathematical
Modelling. International Perspectives on the Teaching and Learning of Mathematical Modelling (pp. 165–180). https://
doi.org/10.1007/978-94-007-0910-2_18
Stillman, G., & Galbraith, P. (1998). Applying mathematics with real world connections: metacognitive characteristics of
secondary students. Educational Studies in Mathematics, 36(2), 157–194. https://doi.org/10.1023/A:1003246329257
Tashakkori, A., & Teddlie, C. (2003). Handbook of mixed methods in social and behavioral research. Thousand Oaks, CA:
Sage. https://doi.org/10.4135/9781506335193
Tristán-López, a. (2008). Modicación al modelo de Lawshe para el dictamen cuantitativo de la validez de contenido de un
instrumento objetivo. Avances En Medición, 6, 37–48. https://dialnet.unirioja.es/servlet/articulo?codigo=2981185
Tzohar-Rozen, M., & Kramarski, B. (2014). Metacognition, Motivation and Emotions: Contribution of Self-Regulated Learning
to Solving Mathematical Problems. Global Education Review, 1(4), 76–95. http://ger.mercy.edu/index.php/ger/article/
view/63
Vorhölter, K. (2017). Measuring Metacognitive Modelling Competencies. In G Stillman, W. Blum, & G. Kaiser (Eds.),
Mathematical Modelling and Applications. International Perspectives on the Teaching and Learning of Mathematical
Modelling (pp. 175–185). Springer, Cham
Vorhölter, K. (2018). Conceptualization and measuring of metacognitive modelling competencies: empirical verication of
theoretical assumptions. ZDM Mathematics Education, 50(1), 343–354. https://doi.org/10.1007/s11858-017-0909-x
Vorhölter, K. (2019). Enhancing metacognitive group strategies for modelling. ZDM Mathematics Education, 51, 703–716.
https://doi.org/10.1007/s11858-019-01055-7
Vorhölter, K., Krüger, A., & Wendt, L. (2019). Chapter 2: Metacognition in Mathematical Modeling – An Overview. In S.
Chamberlin & B. Sriraman (Eds.), Affect in Mathematical Modeling. Advances in Mathematics Education (pp. 29–51).
Springer. https://doi.org/10.1007/978-3-030-04432-9_3
Vorhölter, K., & Krüger, A. (2021). Metacognitive strategies in modeling: Comparison of the results achieved with the help of
different methods. Quadrante, 30(1), 178-197. https://doi.org/10.48489/quadrante.23653
Wang, M. T., & Degol, J. L. (2017). Gender gap in science, technology, engineering, and mathematics (STEM): Current
knowledge, implications for practice, policy, and future directions. Educational psychology review, 29, 119-140. https://
doi.org/10.1007/s10648-015-9355-x
Wedelin, D., Adawi, T., Jahan, T., & Andersson, S. (2015). Investigating and developing engineering students’ mathematical
modelling and problem-solving skills. European Journal of Engineering Education, 40(5), 557–572. https://doi.org/10.
1080/03043797.2014.987648
Weller, J., Gontero, S., & Campbell, S. (2019). Cambio tecnológico y empleo: una perspectiva latinoamericana. Riesgos de la
sustitución tecnológica del trabajo humano y desafíos de la generación de nuevos puestos de trabajo. Macroeconomía
del Desarrollo, N° 201 (LC/TS.2019/37), Santiago, Comisión Económica para América Latina y el Caribe (CEPAL).
www.cepal.org/apps
Wengrowicz, N., Dori, Y. J., & Dori, D. (2018). Metacognition and Meta-assessment in Engineering Education. In Y. J. Dori, Z.
R. Mevarech, & D. R. Baker (Eds.), Cognition, Metacognition, and Culture in STEM Education. Innovations in Science
Education and Technology (pp. 191–216). Springer, Cham. https://doi.org/10.1007/978-3-319-66659-4_9
World Economic Forum, (2020). The Future of Jobs Report 2020. https://www.weforum.org/reports/the-future-of-jobs-
report-2020
Woetzel, J., Madgavkar, A., Ellingrud, K., Labaye, E., Devillard, S., Kutcher, E., Manyika, J., Dobbs, R., & Krishnan, M. (2015).
The power of parity: How advancing women’s equality can add $12 trillion to global growth. McKinsey Global Institute.
https://www.mckinsey.com/featured-insights/employment-and-growth/how-advancing-womens-equality-can-add-12-
trillion-to-global-growth
Yin, R. K. (2014). Case study research design and methods (5th ed.). Thousand Oaks, CA: Sage.