Relationship Between Facial Areas With the Greatest Increase in Non-local Contrast and Gaze Fixations in Recognizing Emotional Expressions

Authors

DOI:

https://doi.org/10.23947/2334-8496-2021-9-3-359-368

Keywords:

face, emotion, eye movements, nonlocal contrast, second-order visual mechanisms

Abstract

The aim of our study was to analyze gaze fixations in recognizing facial emotional expressions in comparison with o the spatial distribution of the areas with the greatest increase in the total (nonlocal) luminance contrast. It is hypothesized that the most informative areas of the image that getting more of the observer’s attention are the areas with the greatest increase in nonlocal contrast. The study involved 100 university students aged 19-21 with normal vision. 490 full-face photo images were used as stimuli. The images displayed faces of 6 basic emotions (Ekman’s Big Six) as well as neutral (emotionless) expressions. Observer’s eye movements were recorded while they were the recognizing expressions of the shown faces. Then, using a developed software, the areas with the highest (max), lowest (min), and intermediate (med) increases in the total contrast in comparison with the surroundings were identified in the stimulus images at different spatial frequencies. Comparative analysis of the gaze maps with the maps of the areas with min, med, and max increases in the total contrast showed that the gaze fixations in facial emotion classification tasks significantly coincide with the areas characterized by the greatest increase in nonlocal contrast. Obtained results indicate that facial image areas with the greatest increase in the total contrast, which preattentively detected by second-order visual mechanisms, can be the prime targets of the attention.

Downloads

Download data is not yet available.

References

Açık, A., Onat, S., Schumann, F., Einhäuser, W., & König, P. (2009). Effects of luminance contrast and its modifications on fixation behavior during free viewing of images from different categories. Vision research, 49(12), 1541-1553. https://doi.org/10.1016/j.visres.2009.03.011 DOI: https://doi.org/10.1016/j.visres.2009.03.011

Allen, P. A., Lien, M. C., & Jardin, E. (2017). Age-related emotional bias in processing two emotionally valenced tasks. Psychological research, 81(1), 289-308. https://doi.org/10.1007/s00426-015-0711-8 DOI: https://doi.org/10.1007/s00426-015-0711-8

Atkinson, A. P., & Smithson, H. E. (2020). The impact on emotion classification performance and gaze behavior of foveal versus extrafoveal processing of facial features. Journal of experimental psychology: Human perception and performance, 46(3), 292–312. https://doi.org/10.1037/xhp0000712 DOI: https://doi.org/10.1037/xhp0000712

Babenko, V. V., & Ermakov, P. N. (2015). Specificity of brain reactions to second-order visual stimuli. Visual neuroscience, 32. https://doi.org/10.1017/S0952523815000085 DOI: https://doi.org/10.1017/S0952523815000085

Babenko, V. V., Ermakov, P. N., & Bozhinskaya, M. A. (2010). Relationship between the Spatial-Frequency Tunings of the First-and the Second-Order Visual Filters. Psikhologicheskii Zhurnal, 31(2), 48-57. (In Russian). https://www.elibrary.ru/download/elibrary_14280688_65866525.pdf

Babenko, V.V. (1989). A new approach to the problem of visual perception mechanisms. In Problems of Neurocybernetics, ed. Kogan, A. B., pp. 10–11. Rostov-on-Don, USSR: Rostov University Pub. (In Russian).

Belousova, A., & Belousova, E. (2020). Gnostic emotions of students in solving of thinking tasks. International Journal of Cognitive Research in Science, Engineering and Education, 8(2), 27-34. https://doi.org/10.5937/IJCRSEE2002027B DOI: https://doi.org/10.5937/IJCRSEE2002027B

Bergen, J. R., & Julesz, B. (1983). Parallel versus serial processing in rapid pattern discrimination. Nature, 303(5919), 696-698. https://doi.org/10.1038/303696a0 DOI: https://doi.org/10.1038/303696a0

Betts, L. R., & Wilson, H. R. (2010). Heterogeneous structure in face-selective human occipito-temporal cortex. Journal of Cognitive Neuroscience, 22(10), 2276-2288. https://doi.org/10.1162/jocn.2009.21346 DOI: https://doi.org/10.1162/jocn.2009.21346

Bindemann, M., Scheepers, C., & Burton, A. M. (2009). Viewpoint and center of gravity affect eye movements to human faces. Journal of vision, 9(2), 1-16. http://dx.doi.org/10.1167/9.2.7 DOI: https://doi.org/10.1167/9.2.7

Bindemann, M., Scheepers, C., Ferguson, H. J., & Burton, A. M. (2010). Face, body, and center of gravity mediate person detection in natural scenes. Journal of Experimental Psychology: Human Perception and Performance, 36(6), 1477. http://dx.doi.org/10.1037/a0019057 DOI: https://doi.org/10.1037/a0019057

Bombari, D., Mast, F. W., & Lobmaier, J. S. (2009). Featural, configural, and holistic face-processing strategies evoke different scan patterns. Perception, 38(10), 1508-1521. https://doi.org/10.1068/p6117 DOI: https://doi.org/10.1068/p6117

Bruce, N. D. & Tsotsos, J. K. 2005). Saliency based on information maximization. In Advances in neural information processing systems, 18, 155-162. http://cs.umanitoba.ca/~bruce/NIPS2005_0081.pdf

Budanova, I. (2021). The Dark Triad of personality in psychology students and eco-friendly behavior. In E3S Web of Conferences (Vol. 273, p. 10048). EDP Sciences. https://doi.org/10.1051/e3sconf/202127310048 DOI: https://doi.org/10.1051/e3sconf/202127310048

Butler, S., Blais, C., Gosselin, F., Bub, D., & Fiset, D. (2010). Recognizing famous people. Attention, Perception, & Psychophysics, 72(6), 1444-1449. https://doi.org/10.3758/APP.72.6.1444 DOI: https://doi.org/10.3758/APP.72.6.1444

Bylinskii, Z., Judd, T., Oliva, A., Torralba, A., & Durand, F. (2018). What do different evaluation metrics tell us about saliency models?. IEEE transactions on pattern analysis and machine intelligence, 41(3), 740-757. https://doi.org/10.1109/TPAMI.2018.2815601 DOI: https://doi.org/10.1109/TPAMI.2018.2815601

Cabeza, R., & Kato, T. (2000). Features are also important: Contributions of featural and configural processing to face recognition. Psychological science, 11(5), 429-433. https://doi.org/10.1111/1467-9280.00283 DOI: https://doi.org/10.1111/1467-9280.00283

Cauchoix, M., Barragan-Jason, G., Serre, T., & Barbeau, E. J. (2014). The neural dynamics of face detection in the wild revealed by MVPA. Journal of Neuroscience, 34(3), 846-854. https://doi.org/10.1523/JNEUROSCI.3030-13.2014 DOI: https://doi.org/10.1523/JNEUROSCI.3030-13.2014

Chubb, C., & Sperling, G. (1989). Two motion perception mechanisms revealed through distance-driven reversal of apparent motion. Proceedings of the National Academy of Sciences, 86(8), 2985-2989. https://doi.org/10.1073/pnas.86.8.2985 DOI: https://doi.org/10.1073/pnas.86.8.2985

Collin, C. A., Rainville, S., Watier, N., & Boutet, I. (2014). Configural and featural discriminations use the same spatial frequencies: A model observer versus human observer analysis. Perception, 43(6), 509-526. https://doi.org/10.1068/p7531 DOI: https://doi.org/10.1068/p7531

Collishaw, S. M., & Hole, G. J. (2000). Featural and configurational processes in the recognition of faces of different familiarity. Perception, 29(8), 893-909. https://doi.org/10.1068/p2949 DOI: https://doi.org/10.1068/p2949

Comfort, W. E., & Zana, Y. (2015). Face detection and individuation: Interactive and complementary stages of face processing. Psychology & Neuroscience, 8(4), 442. https://doi.org/10.1037/h0101278 DOI: https://doi.org/10.1037/h0101278

Crouzet, S. M., & Thorpe, S. J. (2011). Low-level cues and ultra-fast face detection. Frontiers in psychology, 2, 342. https://doi.org/10.3389/fpsyg.2011.00342 DOI: https://doi.org/10.3389/fpsyg.2011.00342

Crouzet, S. M., Kirchner, H., & Thorpe, S. J. (2010). Fast saccades toward faces: face detection in just 100 ms. Journal of vision, 10(4), 16-16. https://doi.org/10.1167/10.4.16 DOI: https://doi.org/10.1167/10.4.16

Dakin, S. C., & Mareschal, I. (2000). Sensitivity to contrast modulation depends on carrier spatial frequency and orientation. Vision research, 40(3), 311-329. https://doi.org/10.1016/S0042-6989(99)00179-0 DOI: https://doi.org/10.1016/S0042-6989(99)00179-0

Einhäuser, W., & König, P. (2003). Does luminance-contrast contribute to a saliency map for overt visual attention?. European Journal of Neuroscience, 17(5), 1089-1097. https://doi.org/10.1046/j.1460-9568.2003.02508.x DOI: https://doi.org/10.1046/j.1460-9568.2003.02508.x

Einhäuser, W., Rutishauser, U., Frady, E. P., Nadler, S., König, P., & Koch, C. (2006). The relation of phase noise and luminance contrast to overt attention in complex visual stimuli. Journal of vision, 6(11), 1-1. https://doi.org/10.1167/6.11.1 DOI: https://doi.org/10.1167/6.11.1

Eisenbarth, H., & Alpers, G. W. (2011). Happy mouth and sad eyes: scanning emotional facial expressions. Emotion, 11(4), 860-865. https://doi.org/10.1037/a0022758 DOI: https://doi.org/10.1037/a0022758

Ekman, P. (1992). An argument for basic emotions. Cognition & emotion, 6(3-4), 169-200. https://doi.org/10.1080/02699939208411068 DOI: https://doi.org/10.1080/02699939208411068

Fodor, J. (1983). Modularity of Mind: An Essay on Faculty Psychology. Cambridge, Mass: MIT Press. DOI: https://doi.org/10.7551/mitpress/4737.001.0001

Fodor, J. A. (2000). The mind doesn’t work that way: The scope and limits of computational psychology. MIT press. Retrieved from http://www.sscnet.ucla.edu/comm/steen/cogweb/Abstracts/Sutherland_on_Fodor_00.html DOI: https://doi.org/10.7551/mitpress/4627.001.0001

Frey, H. P., König, P., & Einhäuser, W. (2007). The role of first-and second-order stimulus features for human overt attention. Perception & Psychophysics, 69(2), 153-161. https://doi.org/10.3758/bf03193738 DOI: https://doi.org/10.3758/BF03193738

Fuchs, I., Ansorge, U., Redies, C., & Leder, H. (2011). Salience in paintings: bottom-up influences on eye fixations. Cognitive Computation, 3(1), 25-36. https://doi.org/10.1007/s12559-010-9062-3 DOI: https://doi.org/10.1007/s12559-010-9062-3

Gao, D., Han, S., & Vasconcelos, N. (2009). Discriminant saliency, the detection of suspicious coincidences, and applications to visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(6), 989-1005. https://doi.org/10.1109/TPAMI.2009.27 DOI: https://doi.org/10.1109/TPAMI.2009.27

Gao, D., & Vasconcelos , N. (2007). Bottom-up saliency is a discriminant process. Proceedings / IEEE International Conference on Computer Vision. IEEE International Conference on Computer Vision. https://doi.org/10.1109/ICCV.2007. 4408851 DOI: https://doi.org/10.1109/ICCV.2007.4408851

Graham, N. V. (2011). Beyond multiple pattern analyzers modeled as linear filters (as classical V1 simple cells): Useful additions of the last 25 years. Vision research, 51(13), 1397-1430. https://doi.org/10.1016/j.visres.2011.02.007 DOI: https://doi.org/10.1016/j.visres.2011.02.007

Guyader, N., Chauvin, A., Boucart, M., & Peyrin, C. (2017). Do low spatial frequencies explain the extremely fast saccades towards human faces?. Vision research, 133, 100-111. https://doi.org/10.1016/j.visres.2016.12.019 DOI: https://doi.org/10.1016/j.visres.2016.12.019

Harris, A., & Aguirre, G. K. (2008). The representation of parts and wholes in face-selective cortex. Journal of Cognitive Neuroscience, 20(5), 863-878. https://doi.org/10.1162/jocn.2008.20509 DOI: https://doi.org/10.1162/jocn.2008.20509

Honey, C., Kirchner, H., & VanRullen, R. (2008). Faces in the cloud: Fourier power spectrum biases ultrarapid face detection. Journal of vision, 8(12), 9-9. https://doi.org/10.1167/8.12.9 DOI: https://doi.org/10.1167/8.12.9

Hou, W., Gao, X., Tao, D., & Li, X. (2013). Visual saliency detection using information divergence. Pattern Recognition, 46(10), 2658-2669. https://doi.org/10.1016/j.patcog.2013.03.008 DOI: https://doi.org/10.1016/j.patcog.2013.03.008

Hou, X., & Zhang, L. (2007, June). Saliency detection: A spectral residual approach. In 2007 IEEE Conference on computer vision and pattern recognition (pp. 1-8). Ieee. https://doi.org/10.1109/CVPR.2007.383267 DOI: https://doi.org/10.1109/CVPR.2007.383267

Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature reviews neuroscience, 2(3), 194-203. https://doi.org/10.1038/35058500 DOI: https://doi.org/10.1038/35058500

Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on pattern analysis and machine intelligence, 20(11), 1254-1259. https://doi.org/10.1109/34.730558 DOI: https://doi.org/10.1109/34.730558

Kanwisher, N. (2000). Domain specificity in face perception. Nature neuroscience, 3(8), 759-763. https://doi.org/10.1038/77664 DOI: https://doi.org/10.1038/77664

Kingdom, F. A., & Keeble, D. R. (1999). On the mechanism for scale invariance in orientation-defined textures. Vision Research, 39(8), 1477-1489. https://doi.org/10.1016/S0042-6989(98)00217-X DOI: https://doi.org/10.1016/S0042-6989(98)00217-X

Kingdom, F.A.A., Prins, N., & Hayes, A. (2003). Mechanism independence for texture-modulation detection is consistent with a filter-rectify-filter mechanism. Vis. Neurosci., 20, 65-76. https://doi.org/10.1017/s0952523803201073 DOI: https://doi.org/10.1017/S0952523803201073

Kosonogov , V., Vorobyeva , E., Kovsh , E., & Ermakov , P. (2019). A review of neurophysiological and genetic correlates of emotional intelligence. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 7(1), 137–142. https://doi.org/10.5937/ijcrsee1901137K DOI: https://doi.org/10.5937/IJCRSEE1901137K

Landy, M. S., & Oruç, I. (2002). Properties of second-order spatial frequency channels. Vision research, 42(19), 2311-2329. https://doi.org/10.1016/S0042-6989(02)00193-1 DOI: https://doi.org/10.1016/S0042-6989(02)00193-1

Langner, O., Dotsch, R., Bijlstra, G., Wigboldus, D. H., Hawk, S. T., & Van Knippenberg, A. D. (2010). Presentation and validation of the Radboud Faces Database. Cognition and emotion, 24(8), 1377-1388. https://doi.org/10.1080/02699930903485076 DOI: https://doi.org/10.1080/02699930903485076

Leder, H., & Bruce, V. (1998). Local and Relational Aspects of Face Distinctiveness. The Quarterly Journal of Experimental Psychology Section A, 51(3), 449–473. https://doi.org/10.1080/713755777 DOI: https://doi.org/10.1080/713755777

Li, G., Yao, Z., Wang, Z., Yuan, N., Talebi, V., Tan, J., ... & Baker, C. L. (2014). Form-cue invariant second-order neuronal responses to contrast modulation in primate area V2. Journal of Neuroscience, 34(36), 12081-12092. https://doi.org/10.1523/JNEUROSCI.0211-14.2014 DOI: https://doi.org/10.1523/JNEUROSCI.0211-14.2014

Liu, J., Harris, A., & Kanwisher, N. (2002). Stages of processing in face perception: an MEG study. Nature neuroscience, 5(9), 910-916. https://doi.org/10.1038/nn909 DOI: https://doi.org/10.1038/nn909

Liu, J., Harris, A., & Kanwisher, N. (2010). Perception of face parts and face configurations: an fMRI study. Journal of cognitive neuroscience, 22(1), 203-211. https://doi.org/10.1162/jocn.2009.21203 DOI: https://doi.org/10.1162/jocn.2009.21203

Liu, J., Higuchi, M., Marantz, A., & Kanwisher, N. (2000). The selectivity of the occipitotemporal M170 for faces. Neuroreport, 11(2), 337-341. https://doi.org/0.1097/00001756-200002070-00023 DOI: https://doi.org/10.1097/00001756-200002070-00023

Liu, L., & Ioannides, A. A. (2010). Emotion separation is completed early and it depends on visual field presentation. PloS one, 5(3), e9790. https://doi.org/10.1371/journal.pone.0009790 DOI: https://doi.org/10.1371/journal.pone.0009790

Lobmaier, J. S., Klaver, P., Loenneker, T., Martin, E., & Mast, F. W. (2008). Featural and configural face processing strategies: evidence from a functional magnetic resonance imaging study. Neuroreport, 19(3), 287-291. https://doi.org/10.1097/WNR.0b013e3282f556fe DOI: https://doi.org/10.1097/WNR.0b013e3282f556fe

Lundqvist, D., Flykt, A., & Öhman, A. (1998). The Karolinska directed emotional faces (KDEF). CD ROM from Department of Clinical Neuroscience, Psychology section, Karolinska Institutet, 91(630), 2-2. DOI: https://doi.org/10.1037/t27732-000

Luria, S. M., & Strauss, M. S. (1978). Comparison of Eye Movements over Faces in Photographic Positives and Negatives. Perception, 7(3), 349–358. https://doi.org/10.1068/p070349 DOI: https://doi.org/10.1068/p070349

Marat, S., Rahman, A., Pellerin, D., Guyader, N., & Houzet, D. (2013). Improving visual saliency by adding ‘face feature map’and ‘center bias’. Cognitive Computation, 5(1), 63-75. https://hal.archives-ouvertes.fr/hal-00703762 DOI: https://doi.org/10.1007/s12559-012-9146-3

Meinhardt-Injac, B., Persike, M., & Meinhardt, G. (2010). The time course of face matching by internal and external features: Effects of context and inversion. Vision Research, 50(16), 1598-1611. https://doi.org/10.1016/j.visres.2010.05.018 DOI: https://doi.org/10.1016/j.visres.2010.05.018

Mertens, I., Siegmund, H., & Grüsser, O. J. (1993). Gaze motor asymmetries in the perception of faces during a memory task. Neuropsychologia, 31(9), 989-998. https://doi.org/10.1016/0028-3932(93)90154-R DOI: https://doi.org/10.1016/0028-3932(93)90154-R

Näsänen, R. (1999). Spatial frequency bandwidth used in the recognition of facial images. Vision research, 39(23), 3824-3833. https://doi.org/10.1016/s0042-6989(99)00096-6 DOI: https://doi.org/10.1016/S0042-6989(99)00096-6

Olszanowski, M., Pochwatko, G., Kuklinski, K., Scibor-Rylski, M., Lewinski, P., & Ohme, R. K. (2015). Warsaw set of emotional facial expression pictures: a validation study of facial display photographs. Frontiers in psychology, 5, 1516. https://doi.org/10.3389/fpsyg.2014.01516 DOI: https://doi.org/10.3389/fpsyg.2014.01516

Pantic, M., Valstar, M., Rademaker, R., & Maat, L. (2005, July). Web-based database for facial expression analysis. In 2005 IEEE international conference on multimedia and Expo (pp. 5-pp). IEEE. https://doi.org/10.1109/ICME.2005.1521424 DOI: https://doi.org/10.1109/ICME.2005.1521424

Pele, O., & Werman, M. (2009, September). Fast and robust earth mover’s distances. In 2009 IEEE 12th international conference on computer vision (pp. 460-467). IEEE. https://doi.org/10.1109/ICCV.2009.5459199 DOI: https://doi.org/10.1109/ICCV.2009.5459199

Perazzi, F., Krähenbühl, P., Pritch, Y., & Hornung, A. (2012, June). Saliency filters: Contrast based filtering for salient region detection. In 2012 IEEE conference on computer vision and pattern recognition (pp. 733-740). IEEE. https://doi.org/10.1109/CVPR.2012.6247743 DOI: https://doi.org/10.1109/CVPR.2012.6247743

Peterson, M. F., & Eckstein, M. P. (2012). Looking just below the eyes is optimal across face recognition tasks. Proceedings of the National Academy of Sciences, 109(48), E3314-E3323. https://doi.org/10.1073/pnas.1214269109 DOI: https://doi.org/10.1073/pnas.1214269109

Reddy, L., Wilken, P., & Koch, C. (2004). Face-gender discrimination is possible in the near-absence of attention. Journal of vision, 4(2), 106-117. https://doi.org/10.1167/4.2.4 DOI: https://doi.org/10.1167/4.2.4

Reynaud, A., & Hess, R. F. (2012). Properties of spatial channels underlying the detection of orientation-modulations. Experimental brain research, 220(2), 135-145. https://doi.org/10.1007/s00221-012-3124-6 DOI: https://doi.org/10.1007/s00221-012-3124-6

Rivolta, D. (2014). Cognitive and neural aspects of face processing. In Prosopagnosia (pp. 19-40). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40784-0_2 DOI: https://doi.org/10.1007/978-3-642-40784-0_2

Rossion, B., Dricot, L., Devolder, A., Bodart, J. M., Crommelinck, M., Gelder, B. D., & Zoontjes, R. (2000). Hemispheric asymmetries for whole-based and part-based face processing in the human fusiform gyrus. Journal of cognitive neuroscience, 12(5), 793-802. https://doi.org/10.1162/089892900562606 DOI: https://doi.org/10.1162/089892900562606

Royer, J., Blais, C., Charbonneau, I., Déry, K., Tardif, J., Duchaine, B., ... & Fiset, D. (2018). Greater reliance on the eye region predicts better face recognition ability. Cognition, 181, 12-20. https://doi.org/10.1016/j.cognition.2018.08.004 DOI: https://doi.org/10.1016/j.cognition.2018.08.004

Ruiz-Soler, M., & Beltran, F. S. (2006). Face perception: An integrative review of the role of spatial frequencies. Psychological Research, 70(4), 273-292. https://doi.org/10.1007/s00426-005-0215-z DOI: https://doi.org/10.1007/s00426-005-0215-z

Schwaninger, A., Lobmaier, J. S., & Collishaw, S. M. (2002). Role of featural and configural information in familiar and unfamiliar face recognition. Lecture Notes in Computer Science, 2525, 643–650. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36181-2_64 DOI: https://doi.org/10.1007/3-540-36181-2_64

Skirtach, I. A., Klimova, N. M., Dunaev, A .G., & Korkhova, V. A. (2019). Effects of rational psychotherapy on emotional state and cognitive attitudes of patients with neurotic disorders. Trends in the development of psycho-pedagogical education in the conditions of transitional society (ICTDPP-2019), 09011. https://doi.org/10.1051/SHSCONF/20197009011 DOI: https://doi.org/10.1051/shsconf/20197009011

Smith, M. L., Volna, B., & Ewing, L. (2016). Distinct information critically distinguishes judgments of face familiarity and identity. Journal of Experimental Psychology: Human Perception and Performance, 42(11), 1770. https://doi.org/10.1037/xhp0000243 DOI: https://doi.org/10.1037/xhp0000243

Sun, P., & Schofield, A. J. (2011). The efficacy of local luminance amplitude in disambiguating the origin of luminance signals depends on carrier frequency: Further evidence for the active role of second-order vision in layer decomposition. Vision research, 51(5), 496-507. https://doi.org/10.1016/j.visres.2011.01.008 DOI: https://doi.org/10.1016/j.visres.2011.01.008

Sutter, A., Beck, J., & Graham, N. (1989). Contrast and spatial variables in texture segregation: Testing a simple spatial-frequency channels model. Perception & psychophysics, 46(4), 312-332. https://doi.org/10.3758/BF03204985 DOI: https://doi.org/10.3758/BF03204985

Sutter, A., Sperling, G., & Chubb, C. (1995). Measuring the spatial frequency selectivity of second-order texture mechanisms. Vision Research, 35(7), 915– 924. https://doi.org/10.1016/0042-6989(94)00196-S DOI: https://doi.org/10.1016/0042-6989(94)00196-S

Tamietto, M., & De Gelder, B. (2010). Neural bases of the non-conscious perception of emotional signals. Nature Reviews Neuroscience, 11(10), 697-709. https://doi.org/10.1038/nrn2889 DOI: https://doi.org/10.1038/nrn2889

Tatler, B. W. (2007). The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions. Journal of vision, 7(14). http://dx.doi.org/10.1167/7.14.4 DOI: https://doi.org/10.1167/7.14.4

Theeuwes, J. (2010). Top–down and bottom–up control of visual selection. Acta psychologica, 135(2), 77-99. https://doi.org/10.1016/j.actpsy.2010.02.006 DOI: https://doi.org/10.1016/j.actpsy.2010.02.006

Theeuwes, J. (2014). Spatial orienting and attentional capture. The Oxford handbook of attention, 231-252. https://doi.org/10.1093/oxfordhb/9780199675111.013.005 DOI: https://doi.org/10.1093/oxfordhb/9780199675111.013.005

Valenti, R., Sebe, N., & Gevers, T. (2009, September). Image saliency by isocentric curvedness and color. In 2009 IEEE 12th international conference on Computer vision (pp. 2185-2192). IEEE. https://doi.org/10.1109/ICCV.2009.5459240 DOI: https://doi.org/10.1109/ICCV.2009.5459240

Vorobyeva, E., Hakunova, F., Skirtach, I., & Kovsh, E. (2019). A review of current research on genetic factors associated with the functioning of the perceptual and emotional systems of the brain. In SHS Web of Conferences (Vol. 70, p. 09009). EDP Sciences. https://doi.org/10.1051/SHSCONF/20197009009 DOI: https://doi.org/10.1051/shsconf/20197009009

Vuilleumier, P. (2002). Facial expression and selective attention. Current Opinion in Psychiatry, 15(3), 291-300. https://doi.org/10.1097/00001504-200205000-00011 DOI: https://doi.org/10.1097/00001504-200205000-00011

Willenbockel, V., Fiset, D., Chauvin, A., Blais, C., Arguin, M., Tanaka, J. W., ... & Gosselin, F. (2010). Does face inversion change spatial frequency tuning?. Journal of Experimental Psychology: Human Perception and Performance, 36(1), 122. https://doi.org/10.1037/a0016465 DOI: https://doi.org/10.1037/a0016465

Willis, J., & Todorov, A. (2006). First impressions: Making up your mind after a 100-ms exposure to a face. Psychological science, 17(7), 592-598. https://doi.org/10.1111/j.1467-9280.2006.01750.x DOI: https://doi.org/10.1111/j.1467-9280.2006.01750.x

Wu, J., Qi, F., Shi, G., & Lu, Y. (2012). Non-local spatial redundancy reduction for bottom-up saliency estimation. Journal of Visual Communication and Image Representation, 23(7), 1158-1166. https://doi.org/10.1016/j.jvcir.2012.07.010 DOI: https://doi.org/10.1016/j.jvcir.2012.07.010

Xia, C., Qi, F., Shi, G., & Wang, P. (2015). Nonlocal center–surround reconstruction-based bottom-up saliency estimation. Pattern Recognition, 48(4), 1337-1348. https://doi.org/10.1016/j.patcog.2014.10.007 DOI: https://doi.org/10.1016/j.patcog.2014.10.007

Published

2021-12-20

How to Cite

Babenko, V., Yavna, D., Vorobeva, E., Denisova, E., Ermakov, P., & Kovsh, E. (2021). Relationship Between Facial Areas With the Greatest Increase in Non-local Contrast and Gaze Fixations in Recognizing Emotional Expressions. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 9(3), 359–368. https://doi.org/10.23947/2334-8496-2021-9-3-359-368

Metrics

Plaudit

Received 2021-08-16
Accepted 2021-10-17
Published 2021-12-20

Most read articles by the same author(s)