Recognition of Facial Expressions Based on Information From the Areas of Highest Increase in Luminance Contrast
DOI:
https://doi.org/10.23947/2334-8496-2022-10-3-37-51Keywords:
expression recognition, saliency, total luminance contrast, second-order visual filtersAbstract
It is generally accepted that the use of the most informative areas of the input image significantly optimizes visual processing. Several authors agree that, the areas of spatial heterogeneity are the most interesting for the visual system and the degree of difference between those areas and their surroundings determine the saliency. The purpose of our study was to test the hy-pothesis that the most informative are the areas of the image of largest increase in total luminance contrast, and information from these areas is used in the process of categorization facial expressions. Using our own program that was developed to imitate the work of second-order visual mechanisms, we created stimuli from the initial photographic images of faces with 6 basic emotions and a neutral expression. These images consisted only of areas of highest increase in total luminance contrast. Initially, we determined the spatial frequency ranges in which the selected areas contain the most useful information for the recognition of each of the expressions. We then compared the expressions recognition accuracy in images of real faces and those synthe-sized from the areas of highest contrast increase. The obtained results indicate that the recognition of expressions in synthe-sized images is somewhat worse than in real ones (73% versus 83%). At the same time, the partial loss of information that oc-curs due to the replacing real and synthesized images does not disrupt the overall logic of the recognition. Possible ways to make up for the missing information in the synthesized images are suggested.
Downloads
References
Açık, A., Onat, S., Schumann, F., Einhäuser, W., & König, P. (2009). Effects of luminance contrast and its modifications on fixation behavior during free viewing of images from different categories. Vision research, 49(12), 1541-1553. https://doi.org/10.1016/j.visres.2009.03.011 DOI: https://doi.org/10.1016/j.visres.2009.03.011
Awasthi, B., Friedman, J., & Williams, M. A. (2011). Faster, stronger, lateralized: Low spatial frequency information supports face processing. Neuropsychologia, 49(13), 3583-3590. https://doi.org/10.1016/j.neuropsychologia.2011.08.027 DOI: https://doi.org/10.1016/j.neuropsychologia.2011.08.027
Babenko, V. V., Ermakov, P. N., & Bozhinskaya, M. A. (2010). Relationship between the Spatial-Frequency Tunings of the First-and the Second-Order Visual Filters. Psikhologicheskii Zhurnal, 31(2), 48-57. Retrieved from https://www.elibrary.ru/item.asp?id=14280688 (in Russ.)
Babenko, V. V., Yavna, D. V., Ermakov, P. N., & Anokhina, P. V. (2021). Nonlocal contrast calculated by the second order visual mechanisms and its significance in identifying facial emotions. F1000 Research, 10, 274. https://doi.org/10.12688/f1000research.28396.1 DOI: https://doi.org/10.12688/f1000research.28396.1
Babenko, V., Yavna, D., Vorobeva, E., Denisova, E., Ermakov, P., & Kovsh, E. (2021). Relationship Between Facial Areas With the Greatest Increase in Non-local Contrast and Gaze Fixations in Recognizing Emotional Expressions. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 9(3), 359–368. https://doi.org/10.23947/2334-8496-2021-9-3-359-368 DOI: https://doi.org/10.23947/2334-8496-2021-9-3-359-368
Barabanshchikov, V. A. (2012). Ekspressii lits i ikh vospriyatiye [Facial expressions and their perception]. Moscow: Izdvo «IPRAN» [IPRAS Publishing House]. (in Russ.)
Barabanshchikov, V. A., Hoze E.G. (2013) Vospriyatiye ekspressiy spokoynogo litsa [Perception of expressions of a neutral face]. Mir psikhologii [World of Psychology], 1:203-223 Retrieved from https://www.elibrary.ru/item.asp?id=18907610 (in Russ.)
Becker, D. V., Neel, R., Srinivasan, N., Neufeld, S., Kumar, D., & Fouse, S. (2012). The vividness of happiness in dynamic facial displays of emotion. PLoS One, 7(1), e26551. https://doi.org/10.1371/annotation/f0519e8c-f347-4950-b7e8-3e9cbc3ec2a9 DOI: https://doi.org/10.1371/journal.pone.0026551
Blais, C., Roy, C., Fiset, D., Arguin, M., & Gosselin, F. (2012). The eyes are not the window to basic emotions. Neuropsychologia, 50(12), 2830-2838. https://doi.org/10.1016/j.neuropsychologia.2012.08.010 DOI: https://doi.org/10.1016/j.neuropsychologia.2012.08.010
Bombari, D., Schmid, P. C., Schmid Mast, M., Birri, S., Mast, F. W., & Lobmaier, J. S. (2013). Emotion recognition: The role of featural and configural face information. Quarterly Journal of Experimental Psychology, 66(12), 2426-2442. https://doi.org/10.1080/17470218.2013.789065 DOI: https://doi.org/10.1080/17470218.2013.789065
Bruce, N. D., & Tsotsos, J. K. (2009). Saliency, attention, and visual search: An information theoretic approach. Journal of vision, 9(3), 5-5. https://doi.org/10.1167/9.3.5 DOI: https://doi.org/10.1167/9.3.5
Butler, S., Blais, C., Gosselin, F., Bub, D., & Fiset, D. (2010). Recognizing famous people. Attention, Perception, & Psychophysics, 72(6), 1444-1449. https://doi.org/10.3758/APP.72.6.1444 DOI: https://doi.org/10.3758/APP.72.6.1444
Calder, A. J., Young, A. W., Keane, J., & Dean, M. (2000). Configural information in facial expression perception. Journal of Experimental Psychology: Human perception and performance, 26(2), 527. https://doi.org/10.1037/0096-1523.26.2.527 DOI: https://doi.org/10.1037/0096-1523.26.2.527
Calvo, M. G., & Beltrán, D. (2014). Brain lateralization of holistic versus analytic processing of emotional facial expressions. Neuroimage, 92, 237-247. https://doi.org/10.1016/j.neuroimage.2014.01.048 DOI: https://doi.org/10.1016/j.neuroimage.2014.01.048
Cauchoix, M., Barragan-Jason, G., Serre, T., & Barbeau, E. J. (2014). The neural dynamics of face detection in the wild revealed by MVPA. Journal of Neuroscience, 34(3), 846-854. https://doi.org/10.1523/JNEUROSCI.3030-13.2014 DOI: https://doi.org/10.1523/JNEUROSCI.3030-13.2014
Cheng, M. M., Mitra, N. J., Huang, X., Torr, P. H., & Hu, S. M. (2014). Global contrast based salient region detection. IEEE transactions on pattern analysis and machine intelligence, 37(3), 569-582. https://doi.org/10.1109/TPAMI.2014.2345401 DOI: https://doi.org/10.1109/TPAMI.2014.2345401
Cheung, O. S., Richler, J. J., Palmeri, T. J., & Gauthier, I. (2008). Revisiting the role of spatial frequencies in the holistic processing of faces. Journal of Experimental Psychology: Human Perception and Performance, 34(6), 1327-1336. https://doi.org/10.1037/a0011752 DOI: https://doi.org/10.1037/a0011752
Collin, C. A., Therrien, M., Martin, C., & Rainville, S. (2006). Spatial frequency thresholds for face recognition when comparison faces are filtered and unfiltered. Perception & psychophysics, 68(6), 879-889. https://doi.org/10.3758/BF03193351 DOI: https://doi.org/10.3758/BF03193351
Comfort, W. E., & Zana, Y. (2015). Face detection and individuation: Interactive and complementary stages of face processing. Psychology & Neuroscience, 8(4), 442. https://doi.org/10.1037/h0101278 DOI: https://doi.org/10.1037/h0101278
Costen, N. P., Parker, D. M., & Craw, I. (1996). Effects of high-pass and low-pass spatial filtering on face identification. Perception & psychophysics, 58(4), 602-612. https://doi.org/10.3758/BF03213093 DOI: https://doi.org/10.3758/BF03213093
Deruelle, C., & Fagot, J. (2005). Categorizing facial identities, emotions, and genders: Attention to high-and low-spatial frequencies by children and adults. Journal of experimental child psychology, 90(2), 172-184. https://doi.org/10.1016/j.jecp.2004.09.001 DOI: https://doi.org/10.1016/j.jecp.2004.09.001
Ekman, P. (1992). An argument for basic emotions. Cognition & emotion, 6(3-4), 169-200. https://doi.org/10.1080/02699939208411068 DOI: https://doi.org/10.1080/02699939208411068
Ellemberg, D., Allen, H. A., & Hess, R. F. (2006). Second-order spatial frequency and orientation channels in human vision. Vision Research, 46(17), 2798-2803. https://doi.org/10.1016/j.visres.2006.01.028 DOI: https://doi.org/10.1016/j.visres.2006.01.028
Flevaris, A. V., & Robertson, L. C. (2016). Spatial frequency selection and integration of global and local information in visual processing: A selective review and tribute to Shlomo Bentin. Neuropsychologia, 83, 192-200. https://doi.org/10.1016/j.neuropsychologia.2015.10.024 DOI: https://doi.org/10.1016/j.neuropsychologia.2015.10.024
Frey, H. P., König, P., & Einhäuser, W. (2007). The role of first-and second-order stimulus features for human overt attention. Perception & Psychophysics, 69(2), 153-161. https://doi.org/10.3758/BF03193738 DOI: https://doi.org/10.3758/BF03193738
Frischen, A., Eastwood, J. D., & Smilek, D. (2008). Visual search for faces with emotional expressions. Psychological bulletin, 134(5), 662-676. https://doi.org/10.1037/0033-2909.134.5.662 DOI: https://doi.org/10.1037/0033-2909.134.5.662
Gao, Z., & Bentin, S. (2011). Coarse-to-fine encoding of spatial frequency information into visual short-term memory for faces but impartial decay. Journal of Experimental Psychology: Human Perception and Performance, 37(4), 1051-1064. https://doi.org/10.1037/a0023091 DOI: https://doi.org/10.1037/a0023091
Goffaux, V. (2009). Spatial interactions in upright and inverted faces: Re-exploration of spatial scale influence. Vision research, 49(7), 774-781. https://doi.org/10.1016/j.visres.2009.02.009 DOI: https://doi.org/10.1016/j.visres.2009.02.009
Goffaux, V., & Rossion, B. (2006). Faces are” spatial”--holistic face perception is supported by low spatial frequencies. Journal of Experimental Psychology: Human perception and performance, 32(4), 1023-1039. https://doi.org/10.1037/0096-1523.32.4.1023 DOI: https://doi.org/10.1037/0096-1523.32.4.1023
Goffaux, V., Peters, J., Haubrechts, J., Schiltz, C., Jansma, B., & Goebel, R. (2011). From coarse to fine? Spatial and temporal dynamics of cortical face processing. Cerebral Cortex, 21(2), 467-476. https://doi.org/10.1093/cercor/bhq112 DOI: https://doi.org/10.1093/cercor/bhq112
Gold, J. M., Mundy, P. J., & Tjan, B. S. (2012). The perception of a face is no more than the sum of its parts. Psychological science, 23(4), 427-434. https://doi.org/10.1177/0956797611427407 DOI: https://doi.org/10.1177/0956797611427407
Gold, J., Bennett, P. J., & Sekuler, A. B. (1999). Identification of band-pass filtered letters and faces by human and ideal observers. Vision research, 39(21), 3537-3560. https://doi.org/10.1016/S0042-6989(99)00080-2 DOI: https://doi.org/10.1016/S0042-6989(99)00080-2
Gosselin, F., & Schyns, P. G. (2001). Bubbles: a technique to reveal the use of information in recognition tasks. Vision research, 41(17), 2261-2271. https://doi.org/10.1016/S0042-6989(01)00097-9 DOI: https://doi.org/10.1016/S0042-6989(01)00097-9
Graham, N. V. (2011). Beyond multiple pattern analyzers modeled as linear filters (as classical V1 simple cells): Useful additions of the last 25 years. Vision research, 51(13), 1397-1430. https://doi.org/10.1016/j.visres.2011.02.007 DOI: https://doi.org/10.1016/j.visres.2011.02.007
Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex. The Journal of physiology, 148(3), 574-591. https://doi.org/10.1113/jphysiol.1959.sp006308 DOI: https://doi.org/10.1113/jphysiol.1959.sp006308
Jack, R. E., Garrod, O. G., Yu, H., Caldara, R., & Schyns, P. G. (2012). Facial expressions of emotion are not culturally universal. Proceedings of the National Academy of Sciences, 109(19), 7241-7244. https://doi.org/10.1073/pnas.1200155109 DOI: https://doi.org/10.1073/pnas.1200155109
Jennings, B. J., & Yu, Y. (2017). The role of spatial frequency in emotional face classification. Attention, Perception, & Psychophysics, 79(6), 1573-1577. https://doi.org/10.3758/s13414-017-1377-7 DOI: https://doi.org/10.3758/s13414-017-1377-7
Kumar, D., & Srinivasan, N. (2011). Emotion perception is mediated by spatial frequency content. Emotion, 11(5), 1144-1151. https://doi.org/10.1037/a0025453 DOI: https://doi.org/10.1037/a0025453
Langner, O., Dotsch, R., Bijlstra, G., Wigboldus, D. H., Hawk, S. T., & Van Knippenberg, A. D. (2010). Presentation and validation of the Radboud Faces Database. Cognition and emotion, 24(8), 1377-1388. https://doi.org/10.1080/02699930903485076 DOI: https://doi.org/10.1080/02699930903485076
Leder, H., & Bruce, V. (2000). When inverted faces are recognized: The role of configural information in face recognition. The quarterly journal of experimental psychology Section A, 53(2), 513-536. https://doi.org/10.1080/713755889 DOI: https://doi.org/10.1080/713755889
Lee, H. S., & Kim, D. (2008). Expression-invariant face recognition by facial expression transformations. Pattern recognition letters, 29(13), 1797-1805. https://doi.org/10.1016/j.patrec.2008.05.012 DOI: https://doi.org/10.1016/j.patrec.2008.05.012
Li, G., Yao, Z., Wang, Z., Yuan, N., Talebi, V., Tan, J., ... & Baker, C. L. (2014). Form-cue invariant second-order neuronal responses to contrast modulation in primate area V2. Journal of Neuroscience, 34(36), 12081-12092. https://doi.org/10.1523/JNEUROSCI.0211-14.2014 DOI: https://doi.org/10.1523/JNEUROSCI.0211-14.2014
Liu, L., & Ioannides, A. A. (2010). Emotion separation is completed early and it depends on visual field presentation. PloS one, 5(3), e9790. https://doi.org/10.1371/journal.pone.0009790 DOI: https://doi.org/10.1371/journal.pone.0009790
Lobmaier, J. S., & Mast, F. W. (2007). Perception of novel faces: The parts have it!. Perception, 36(11), 1660-1673. https://doi.org/10.1068/p5642 DOI: https://doi.org/10.1068/p5642
Lundqvist, D., Flykt, A., & Öhman, A. (1998). The Karolinska directed emotional faces (KDEF). CD ROM from Department of Clinical Neuroscience, Psychology section, Karolinska Institutet, 91(630), 2-2. https://doi.org/10.1037/t27732-000 DOI: https://doi.org/10.1037/t27732-000
Marat, S., Rahman, A., Pellerin, D., Guyader, N., & Houzet, D. (2013). Improving visual saliency by adding ‘face feature map’and ‘center bias’. Cognitive Computation, 5(1), 63-75. https://doi.org/10.1007/s12559-012-9146-3 DOI: https://doi.org/10.1007/s12559-012-9146-3
Maurer, D., Le Grand, R., & Mondloch, C. J. (2002). The many faces of configural processing. Trends in cognitive sciences, 6(6), 255-260. https://doi.org/10.1016/S1364-6613(02)01903-4 DOI: https://doi.org/10.1016/S1364-6613(02)01903-4
McKone, E. (2008). Configural processing and face viewpoint. Journal of Experimental Psychology: Human Perception and Performance, 34(2), 310-327. https://doi.org/10.1037/0096-1523.34.2.310 DOI: https://doi.org/10.1037/0096-1523.34.2.310
Morawetz, C., Baudewig, J., Treue, S., & Dechent, P. (2011). Effects of spatial frequency and location of fearful faces on human amygdala activity. Brain research, 1371, 87-99. https://doi.org/10.1016/j.brainres.2010.10.110 DOI: https://doi.org/10.1016/j.brainres.2010.10.110
Näsänen, R. (1999). Spatial frequency bandwidth used in the recognition of facial images. Vision research, 39(23), 3824-3833. https://doi.org/10.1016/S0042-6989(99)00096-6 DOI: https://doi.org/10.1016/S0042-6989(99)00096-6
Oliva, A., & Schyns, P. G. (1997). Coarse blobs or fine edges? Evidence that information diagnosticity changes the perception of complex visual stimuli. Cognitive psychology, 34(1), 72-107. https://doi.org/10.1006/cogp.1997.0667 DOI: https://doi.org/10.1006/cogp.1997.0667
Olszanowski, M., Pochwatko, G., Kuklinski, K., Scibor-Rylski, M., Lewinski, P., & Ohme, R. K. (2015). Warsaw set of emotional facial expression pictures: a validation study of facial display photographs. Frontiers in psychology, 5, 1516. https://doi.org/10.3389/fpsyg.2014.01516 DOI: https://doi.org/10.3389/fpsyg.2014.01516
Pantic, M., Valstar, M., Rademaker, R., & Maat, L. (2005, July). Web-based database for facial expression analysis. In 2005 IEEE international conference on multimedia and Expo (pp. 5-pp). IEEE. https://doi.org/10.1109/ICME.2005.1521424 DOI: https://doi.org/10.1109/ICME.2005.1521424
Perazzi, F., Krähenbühl, P., Pritch, Y., & Hornung, A. (2012, June). Saliency filters: Contrast based filtering for salient region detection. In 2012 IEEE conference on computer vision and pattern recognition (pp. 733-740). IEEE. https://doi.org/10.1109/CVPR.2012.6247743 DOI: https://doi.org/10.1109/CVPR.2012.6247743
Peyrin, C., Michel, C. M., Schwartz, S., Thut, G., Seghier, M., Landis, T., ... & Vuilleumier, P. (2010). The neural substrates and timing of top–down processes during coarse-to-fine categorization of visual scenes: A combined fMRI and ERP study. Journal of cognitive neuroscience, 22(12), 2768-2780. https://doi.org/10.1162/jocn.2010.21424 DOI: https://doi.org/10.1162/jocn.2010.21424
Piepers, D. W., & Robbins, R. A. (2012). A review and clarification of the terms “holistic,”“configural,” and “relational” in the face perception literature. Frontiers in psychology, 3, 559. https://doi.org/10.3389/fpsyg.2012.00559 DOI: https://doi.org/10.3389/fpsyg.2012.00559
Pourtois, G., Dan, E. S., Grandjean, D., Sander, D., & Vuilleumier, P. (2005). Enhanced extrastriate visual response to bandpass spatial frequency filtered fearful faces: Time course and topographic evoked-potentials mapping. Human brain mapping, 26(1), 65-79. https://doi.org/10.1002/hbm.20130 DOI: https://doi.org/10.1002/hbm.20130
Royer, J., Blais, C., Charbonneau, I., Déry, K., Tardif, J., Duchaine, B., ... & Fiset, D. (2018). Greater reliance on the eye region predicts better face recognition ability. Cognition, 181, 12-20. https://doi.org/10.1016/j.cognition.2018.08.004 DOI: https://doi.org/10.1016/j.cognition.2018.08.004
Sakai, K., & Finkel, L. H. (1995). Characterization of the spatial-frequency spectrum in the perception of shape from texture. JOSA A, 12(6), 1208-1224. https://doi.org/10.1364/JOSAA.12.001208 DOI: https://doi.org/10.1364/JOSAA.12.001208
Shaw, K., Lien, M. C., Ruthruff, E., & Allen, P. A. (2011). Electrophysiological evidence of emotion perception without central attention. Journal of Cognitive Psychology, 23(6), 695-708. https://doi.org/10.1080/20445911.2011.586624 DOI: https://doi.org/10.1080/20445911.2011.586624
Smith, F. W., & Schyns, P. G. (2009). Smile through your fear and sadness: Transmitting and identifying facial expression signals over a range of viewing distances. Psychological Science, 20(10), 1202-1208. https://doi.org/10.1111/j.1467-9280.2009.02427.x DOI: https://doi.org/10.1111/j.1467-9280.2009.02427.x
Smith, M. L., Cottrell, G. W., Gosselin, F., & Schyns, P. G. (2005). Transmitting and decoding facial expressions. Psychological science, 16(3), 184-189. https://doi.org/10.1111/j.0956-7976.2005.00801.x DOI: https://doi.org/10.1111/j.0956-7976.2005.00801.x
Smith, M. L., Volna, B., & Ewing, L. (2016). Distinct information critically distinguishes judgments of face familiarity and identity. Journal of Experimental Psychology: Human Perception and Performance, 42(11), 1770-1779. https://doi.org/10.1037/xhp0000243 DOI: https://doi.org/10.1037/xhp0000243
Solomon, J.A., & Morgan, M.J. (2017). Orientation-defined boundaries are detected with low efficiency. Vision Research, 138, 66-70. https://doi.org/10.1016/j.visres.2017.06.009 DOI: https://doi.org/10.1016/j.visres.2017.06.009
Stein, T., Seymour, K., Hebart, M. N., & Sterzer, P. (2014). Rapid fear detection relies on high spatial frequencies. Psychological science, 25(2), 566-574. https://doi.org/10.1177/0956797613512509 DOI: https://doi.org/10.1177/0956797613512509
Sun, P., & Schofield, A. J. (2011). The efficacy of local luminance amplitude in disambiguating the origin of luminance signals depends on carrier frequency: Further evidence for the active role of second-order vision in layer decomposition. Vision research, 51(5), 496-507. https://doi.org/10.1016/j.visres.2011.01.008 DOI: https://doi.org/10.1016/j.visres.2011.01.008
‘t Hart, B.M., Schmidt, H.C.E.F., Roth, C., & Einhäuser, W. (2013). Fixations on objects in natural scenes: dissociating importance from saliency. Frontiers in Psychology, 4.- Article 455.- 9p. https://doi.org/10.3389/fpsyg.2013.00455 DOI: https://doi.org/10.3389/fpsyg.2013.00455
Tanaka, J. W., Kaiser, M. D., Butler, S., & Le Grand, R. (2012). Mixed emotions: Holistic and analytic perception of facial expressions. Cognition & Emotion, 26(6), 961-977. https://doi.org/10.1080/02699931.2011.630933 DOI: https://doi.org/10.1080/02699931.2011.630933
Tanskanen, T., Näsänen, R., Montez, T., Päällysaho, J., & Hari, R. (2005). Face recognition and cortical responses show similar sensitivity to noise spatial frequency. Cerebral Cortex, 15(5), 526-534. https://doi.org/10.1093/cercor/bhh152 DOI: https://doi.org/10.1093/cercor/bhh152
Vlamings, P. H., Goffaux, V., & Kemner, C. (2009). Is the early modulation of brain activity by fearful facial expressions primarily mediated by coarse low spatial frequency information?. Journal of vision, 9(5), 1-13. https://doi.org/10.1167/9.5.12 DOI: https://doi.org/10.1167/9.5.12
Vuilleumier, P., & Pourtois, G. (2007). Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging. Neuropsychologia, 45(1), 174-194. https://doi.org/10.1016/j.neuropsychologia.2006.06.003 DOI: https://doi.org/10.1016/j.neuropsychologia.2006.06.003
Vuilleumier, P., Armony, J. L., Driver, J., & Dolan, R. J. (2003). Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nature neuroscience, 6(6), 624-631. https://doi.org/10.1038/nn1057 DOI: https://doi.org/10.1038/nn1057
White, M. (2000). Parts and wholes in expression recognition. Cognition & Emotion, 14(1), 39-60. https://doi.org/10.1080/026999300378987 DOI: https://doi.org/10.1080/026999300378987
Willis, J., & Todorov, A. (2006). First impressions: Making up your mind after a 100-ms exposure to a face. Psychological science, 17(7), 592-598. https://doi.org/10.1111/j.1467-9280.2006.01750.x DOI: https://doi.org/10.1111/j.1467-9280.2006.01750.x
Wu, J., Qi, F., Shi, G., & Lu, Y. (2012). Non-local spatial redundancy reduction for bottom-up saliency estimation. Journal of Visual Communication and Image Representation, 23(7), 1158-1166. https://doi.org/10.1016/j.jvcir.2012.07.010 DOI: https://doi.org/10.1016/j.jvcir.2012.07.010
Xia, C., Qi, F., Shi, G., & Wang, P. (2015). Nonlocal center–surround reconstruction-based bottom-up saliency estimation. Pattern Recognition, 48(4), 1337-1348. https://doi.org/10.1016/j.patcog.2014.10.007 DOI: https://doi.org/10.1016/j.patcog.2014.10.007
Yarbus, A. L. (2013). Eye movements and vision. Springer. https://doi.org/10.1007/978-1-4899-5379-7 DOI: https://doi.org/10.1007/978-1-4899-5379-7
Yavna, D. V. (2012). Psikhofiziologicheskiye osobennosti zritel’nogo vospriyatiya prostranstvenno modulirovannykh priznako [Psychophysiological features of visual perception of spatially modulated features]. PhD Thesis. Rostov-on-Don (in Russ.)
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Vitali Babenko, Daria Alekseeva, Denis Yavna, Ekaterina Denisova, Ekaterina Kovsh, Pavel Ermakov

This work is licensed under a Creative Commons Attribution 4.0 International License.
Metrics
Plaudit
Accepted 2022-12-04
Published 2022-12-20