The Neural Correlates of Exact Calculation in Word and Numerical Formats in Low And High Math Performers: A fNIRS Study
DOI:
https://doi.org/10.23947/2334-8496-2023-11-1-93-114Keywords:
exact calculation, addition, numerical format, word format, math competence, fNIRSAbstract
The representation format of math problems can manifest dissimilarly in people with varying levels of math performance. The aim of this study was to investigate the neurocognitive underpinnings of two-digit exact calculation tasks in different formats: numerical and word. Fifty-three students were divided into groups with high and low levels of math performance based on their ability to solve math problems. They were asked to calculate addition problems with two-digit numbers and to read math problems that did not require calculations. Brain activation was recorded using functional near-infrared spectroscopy (fNIRS). General linear model (GLM) analysis revealed that reading math problems without calculation led to increased activation in the inferior temporal and fusiform gyri in a group of high-level performers, while a group of low-level performers demonstrated increased activation in Broca’s area and the inferior frontal gyrus in the same experimental condition, as well as during solving arithmetic problems in a word format of the exact calculation task. Analysis after bootstrapping revealed similar activation patterns in both groups. Both domain-specific and domain-general regions of the frontal and parietal brain areas were involved in the calculations. Right and left hemisphere activation was found both in low and high math performers. Comparing experimental conditions with resting state revealed significant activation in Broca’s area in all conditions in a group of high-level performers and in a word format of arithmetic problems in a group of low-level performers. Thus, the observed brain patterns suggest the involvement of complex sentence comprehension, especially in high-performing students. These results could be used in future to improve educational practice for students with varying levels of math competence.
Downloads
References
Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., ... & Varoquaux, G. (2014). Machine learning for neuroimaging with scikit-learn. Frontiers in neuroinformatics, 14. https://doi.org/10.3389/fninf.2014.00014
Amalric, M., & Dehaene, S. (2016). Origins of the brain networks for advanced mathematics in expert mathematicians. Proceedings of the National Academy of Sciences, 113(18), 4909-4917. https://doi.org/10.1073/pnas.1603205113
Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature reviews neuroscience, 9(4), 278-291. https://doi.org/10.1038/nrn2334
Ansari, D., Grabner, R. H., Koschutnig, K., Reishofer, G., & Ebner, F. (2011). Individual differences in mathematical competence modulate brain responses to arithmetic errors: An fMRI study. Learning and Individual Differences, 21(6), 636-643. https://doi.org/10.1016/j.lindif.2011.07.013
Ansari, D., & Karmiloff-Smith, A. (2002). Atypical trajectories of number development: A neuroconstructivist perspective. Trends in cognitive sciences, 6(12), 511-516. https://doi.org/10.1016/S1364-6613(02)02040-5
Ardila, A. (2010). On the evolution of calculation abilities. Frontiers in Evolutionary Neuroscience, 7. https://doi.org/10.3389/fnevo.2010.00007
Arsalidou, M., & Taylor, M. J. (2011). Is 2+ 2= 4? Meta-analyses of brain areas needed for numbers and calculations. Neuroimage, 54(3), 2382-2393. https://doi.org/10.1016/j.neuroimage.2010.10.009
Artemenko, C., Sitnikova, M. A., Soltanlou, M., Dresler, T., & Nuerk, H. C. (2020). Functional lateralization of arithmetic processing in the intraparietal sulcus is associated with handedness. Scientific reports, 10(1), 1-11. https://doi.org/10.1038/s41598-020-58477-7
Artemenko, C., Soltanlou, M., Dresler, T., Ehlis, A. C., & Nuerk, H. C. (2018a). The neural correlates of arithmetic difficulty depend on mathematical ability: evidence from combined fNIRS and ERP. Brain structure and function, 223(6), 2561-2574. https://doi.org/10.1007/s00429-018-1618-0
Artemenko, C., Soltanlou, M., Ehlis, A. C., Nuerk, H. C., & Dresler, T. (2018b). The neural correlates of mental arithmetic in adolescents: a longitudinal fNIRS study. Behavioral and brain functions, 14(1), 1-13. https://doi.org/10.1186/s12993-018-0137-8
Artemenko, C. (2021). Developmental fronto-parietal shift of brain activation during mental arithmetic across the lifespan: A registered report protocol. Plos one, 16(8), e0256232. https://doi.org/10.1371/journal.pone.0256232
Barbey, A. K., Koenigs, M., & Grafman, J. (2013). Dorsolateral prefrontal contributions to human working memory. Cortex, 49(5), 1195-1205. https://doi.org/10.1016/j.cortex.2012.05.022
Basten, U., Stelzel, C., & Fiebach, C. J. (2012). Trait anxiety and the neural efficiency of manipulation in working memory. Cognitive, Affective, & Behavioral Neuroscience, 12(3), 571-588. https://doi.org/10.3758/s13415-012-0100-3
Beeman, M. J., & Bowden, E. M. (2000). The right hemisphere maintains solution-related activation for yet-to-be-solved problems. Memory & cognition, 28(7), 1231-1241. https://doi.org/10.3758/BF03211823
Boonen, A. J., de Koning, B. B., Jolles, J., & Van der Schoot, M. (2016). Word problem solving in contemporary math education: A plea for reading comprehension skills training. Frontiers in psychology, 7, 191. https://doi.org/10.3389/fpsyg.2016.00191
Brannon, E. M. (2002). The development of ordinal numerical knowledge in infancy. Cognition, 83(3), 223-240. https://doi.org/10.1016/S0010-0277(02)00005-7
Bull, R., & Lee, K. (2014). Executive functioning and mathematics achievement. Child Development Perspectives, 8(1), 36-41. https://doi.org/10.1111/cdep.12059
Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: from brain to education. Science, 332(6033), 1049-1053. https://doi.org/10.1126/science.1201536
Caviola, S., Mammarella, I. C., Cornoldi, C., & Lucangeli, D. (2012). The involvement of working memory in children’s exact and approximate mental addition. Journal of experimental child psychology, 112(2), 141-160. https://doi.org/10.1016/j.jecp.2012.02.005
Clark, C. A. C., Liu, Y., Wright, N. L. A., Bedrick, A., & Edgin, J. O. (2017). Functional neural bases of numerosity judgments in healthy adults born preterm. Brain and Cognition, 118, 90–99. https://doi.org/10.1016/j.bandc.2017.07.011
Cragg, L., Keeble, S., Richardson, S., Roome, H. E., & Gilmore, C. (2017). Direct and indirect influ-ences of executive functions on mathematics achievement. Cognition, 162, 12–26. https://doi.org/10.1016/j.cognition.2017.01.014
Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical cognition, 1(1), 83-120. Retrieved from https://www.unicog.org/publications/DehaeneCohen_TripleCodeModelNumberProcessing_MathCognition1995.pdf
Daroczy, G., Wolska, M., Meurers, W. D., & Nuerk, H. C. (2015). Word problems: A review of linguistic and numerical factors contributing to their difficulty. Frontiers in psychology, 6, 348. https://doi.org/10.3389/fpsyg.2015.00348
Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive neuropsychology, 20(3-6), 487-506. https://doi.org/10.1080/02643290244000239
Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284(5416), 970-974. https://doi.org/10.1126/science.284.5416.970
Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A., Trieb, T., & Benke, T. (2003). Learning complex arithmetic—an fMRI study. Cognitive Brain Research, 18(1), 76-88. https://doi.org/10.1016/j.cogbrainres.2003.09.005
Devlin, J. T., Matthews, P. M., & Rushworth, M. F. (2003). Semantic processing in the left inferior pre-frontal cortex: a combined functional magnetic resonance imaging and transcranial magnetic stimulation study. Journal of cognitive neuroscience, 15(1), 71-84. https://doi.org/10.1162/089892903321107837
Dresler, T., Obersteiner, A., Schecklmann, M., Vogel, A. C. M., Ehlis, A. C., Richter, M. M., ... & Fallgatter, A. J. (2009). Arithmetic tasks in different formats and their influence on behavior and brain oxygenation as assessed with near-infrared spectroscopy (NIRS): a study involving primary and secondary school children. Journal of neural transmission, 116(12), 1689-1700. https://doi.org/10.1007/s00702-009-0307-9
Esch, L., Dinh, C., Larson, E., Engemann, D., Jas, M., Khan, S., ... & Hämäläinen, M. S. (2019). MNE: software for acquiring, processing, and visualizing MEG/EEG data. Magnetoencephalography: From Signals to Dynamic Cortical Networks, 355-371. https://doi.org/10.1007/978-3-030-00087-5_59
Fadiga, L., & Craighero, L. (2006). Hand actions and speech representation in Broca’s area. Cortex, 42(4), 486-490. https://doi.org/10.1016/S0010-9452(08)70383-6
Fanari, R., Meloni, C., & Massidda, D. (2019). Visual and Spatial Working Memory Abilities Predict Early Math Skills: A 369 Longitudinal Study. Frontiers in Psychology. 10, 2460. https://doi.org/10.3389/fpsyg.2019.02460
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in cognitive sciences, 8(7), 307-314. https://doi.org/10.1016/j.tics.2004.05.002
Fishburn, F. A., Ludlum, R. S., Vaidya, C. J., & Medvedev, A. V. (2019). Temporal derivative distribution repair (TDDR): a motion correction method for fNIRS. Neuroimage, 184, 171-179. https://doi.org/10.1016/j.neuroimage.2018.09.025
Friso-Van den Bos, I., Van der Ven, S. H., Kroesbergen, E. H., & Van Luit, J. E. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational research review, 10, 29-44. https://doi.org/10.1016/j.edurev.2013.05.003
Fuchs, L. S., Fuchs, D., Compton, D. L., Powell, S. R., Seethaler, P. M., Capizzi, A. M., ... & Fletcher, J. M. (2006). The cognitive correlates of third-grade skill in arithmetic, algorithmic computation, and arithmetic word problems. Journal of Educational Psychology, 98(1), 29. https://doi.org/10.1037/0022-0663.98.1.29
Fuchs, L. S., Hamlett, C. L., & Powell, S. R. (2003). Grade 3 math battery. [Unpublished paper.] (Available from L. S. Fuchs, Department of Special Education, 328 Peabody, Vanderbilt University, Nashville, TN 37203).
Fürst, A. J., & Hitch, G. J. (2000). Separate roles for executive and phonological components of working memory in mental arithmetic. Memory & cognition, 28(5), 774-782. https://doi.org/10.3758/BF03198412
Gentilucci, M., Bernardis, P., Crisi, G., & Volta, R. D. (2006). Repetitive transcranial magnetic stimulation of Broca’s area affects verbal responses to gesture observation. Journal of Cognitive Neuroscience, 18(7), 1059-1074. https://doi.org/10.1162/jocn.2006.18.7.1059
Gilmore, C., Clayton, S., Cragg, L., McKeaveney, C., Simms, V., & Johnson, S. (2018). Understanding arithmetic concepts: The role of domain-specific and domain-general skills. PLoS ONE, 13(9), 1–20. https://doi.org/10.1371/journal.pone.0201724
Göbel, S. M., Moeller, K., Pixner, S., Kaufmann, L., & Nuerk, H. C. (2014). Language affects symbolic arithmetic in children: the case of number word inversion. Journal of experimental child psychology, 119, 17-25. https://doi.org/10.1016/j.jecp.2013.10.001
Grabner, R. H., Ansari, D., Reishofer, G., Stern, E., Ebner, F., & Neuper, C. (2007). Individual differences in mathematical competence predict parietal brain activation during mental calculation. Neuroimage, 38(2), 346-356. https://doi.org/10.1016/j.neuroimage.2007.07.041
Grabner, R. H., Reishofer, G., Koschutnig, K., & Ebner, F. (2011). Brain correlates of mathematical competence in processing mathematical representations. Frontiers in human neuroscience, 5, 130. https://doi.org/10.3389/fnhum.2011.00130
Grewe, T., Bornkessel, I., Zysset, S., Wiese, R., von Cramon, D. Y., & Schlesewsky, M. (2005). The emergence of the unmarked: A new perspective on the language-specific function of Broca’s area. Human brain mapping, 26(3), 178-190.
Houdé, O., Rossi, S., Lubin, A., & Joliot, M. (2010). Mapping numerical processing, reading, and executive functions in the developing brain: an fMRI meta-analysis of 52 studies including 842 children. Developmental science, 13(6), 876-885. https://doi.org/10.1111/j.1467-7687.2009.00938.x
Hoshi, Y., Kobayashi, N., & Tamura, M. (2001). Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model. Journal of applied physiology, 90(5), 1657-1662. https://doi.org/10.1152/jappl.2001.90.5.1657
Hurlburt, R. T., Alderson-Day, B., Fernyhough, C., & Kühn, S. (2015). What goes on in the resting-state? A qualitative glimpse into resting-state experience in the scanner. Frontiers in psychology, 6, 1535. https://doi.org/10.3389/fpsyg.2015.01535
Imbo, I., Vandierendonck, A., & De Rammelaere, S. (2007). The role of working memory in the carry operation of mental arithmetic: Number and value of the carry. Quarterly Journal of Experimental Psychology, 60(5), 708-731. https://doi.org/10.1080/17470210600762447
Ischebeck, A., Zamarian, L., Siedentopf, C., Koppelstätter, F., Benke, T., Felber, S., & Delazer, M. (2006). How specifically do we learn? Imaging the learning of multiplication and subtraction. Neuroimage, 30(4), 1365-1375. https://doi.org/10.1016/j.neuroimage.2005.11.016
Kaufmann, L., Koppelstaetter, F., Siedentopf, C., Haala, I., Haberlandt, E., Zimmerhackl, L.-B., et al. (2006). Neural correlates of the number–size interference task in children. Neuroreport, 17, 587. https://doi.org/10.1097/00001756-200604240-00007
Klados, M. A., Simos, P., Micheloyannis, S., Margulies, D., & Bamidis, P. D. (2015). ERP measures of math anxiety: how math anxiety affects working memory and mental calculation tasks?. Frontiers in behavioral neuroscience, 9, 282. https://doi.org/10.3389/fnbeh.2015.00282
Klein, E., Nuerk, H. C., Wood, G., Knops, A., & Willmes, K. (2009). The exact vs. approximate distinction in numerical cognition may not be exact, but only approximate: How different processes work together in multi-digit addition. Brain and cognition, 69(2), 369-381. https://doi.org/10.1016/j.bandc.2008.08.031
Klein, E., Willmes, K., Dressel, K., Domahs, F., Wood, G., Nuerk, H. C., & Moeller, K. (2010). Categorical and continuous-disentangling the neural correlates of the carry effect in multi-digit addition. Behavioral and Brain Functions, 6(1), 1-15. https://doi.org/10.1186/1744-9081-6-70
Klein, M., Grainger, J., Wheat, K. L., Millman, R. E., Simpson, M. I., Hansen, P. C., & Cornelissen, P. L. (2015). Early activity in Broca’s area during reading reflects fast access to articulatory codes from print. Cerebral Cortex, 25(7), 1715-1723. https://doi.org/10.1093/cercor/bht350
Kong, J., Wang, C., Kwong, K., Vangel, M., Chua, E., & Gollub, R. (2005). The neural substrate of arithmetic operations and procedure complexity. Cognitive Brain Research, 22(3), 397-405. https://doi.org/10.1016/j.cogbrainres.2004.09.011
Kucian, K., von Aster, M., Loenneker, T., Dietrich, T., & Martin, E. (2008). Development of neural networks for exact and approximate calculation: A FMRI study. Developmental neuropsychology, 33(4), 447-473. https://doi.org/10.1080/87565640802101474
Lavander-Ferreira, M. J. (2020). Number Processing in Infants and Children Born Very Preterm (Doctoral dissertation, UCL (University College London)). Number Processing in Infants and Children Born Very Preterm - UCL Discovery
Luke, R., Larson, E. D., Shader, M. J., Innes-Brown, H., Van Yper, L., Lee, A. K., ... & McAlpine, D. (2021). Analysis methods for measuring passive auditory fNIRS responses generated by a block-design paradigm. Neurophotonics, 8(2), 025008. https://doi.org/10.1117/1.NPh.8.2.025008
Matejko, A. A., & Ansari, D. (2017). How do individual differences in children’s domain specific and domain general abilities relate to brain activity within the intraparietal sulcus during arithmetic? An fMRI study. Human brain mapping, 38(8), 3941-3956. https://doi.org/10.1002/hbm.23640
Meiri, H., Sela, I., Nesher, P., Izzetoglu, M., Izzetoglu, K., Onaral, B., & Breznitz, Z. (2012). Frontal lobe role in simple arithmetic calculations: An fNIR study. Neuroscience letters, 510(1), 43-47. https://doi.org/10.1016/j.neulet.2011.12.066
Menon, V., Rivera, S. M., White, C. D., Eliez, S., Glover, G. H., & Reiss, A. L. (2000). Functional optimization of arithmetic processing in perfect performers. Cognitive Brain Research, 9(3), 343-345. https://doi.org/10.1016/S0926-6410(00)00010-0
Moeller, K., Klein, E., & Nuerk, H. C. (2011a). (No) small adults: Children’s processing of carry addition problems. Developmental Neuropsychology, 36(6), 702-720. https://doi.org/10.1080/87565641.2010.549880
Moeller, K., Klein, E., & Nuerk, H. C. (2011b). Three processes underlying the carry effect in addition–Evidence from eye tracking. British Journal of Psychology, 102(3), 623-645. https://doi.org/10.1111/j.2044-8295.2011.02034.x
Monti, M. M., Parsons, L. M., & Osherson, D. N. (2012). Thought beyond language: Neural dissociation of algebra and natural language. Psychological science, 23(8), 914-922. https://doi.org/10.1177/09567976124374
Moeller, K., Willmes, K., & Klein, E. (2015). A review on functional and structural brain connectivity in numerical cognition. Frontiers in human neuroscience, 9, 227. https://doi.org/10.3389/fnhum.2015.00227
Morcom, A. M., & Fletcher, P. C. (2007). Does the brain have a baseline? Why we should be resisting a rest. Neuroimage, 37(4), 1073-1082. https://doi.org/10.1016/j.neuroimage.2006.09.013
Mundy, E., & Gilmore, C. K. (2009). Children’s mapping between symbolic and nonsymbolic representations of number. Journal of experimental child psychology, 103(4), 490-502. https://doi.org/10.1016/j.jecp.2009.02.003
Murphy, D. G. M., Daly, E. M., Van Amelsvoort, T., Robertson, D., Simmons, A., & Critchley, H. D. (1998). Functional neuroanatomical dissociation of verbal, visual and spatial working memory. Schizophrenia Research, 1(29), 105-106. https://doi.org/10.1016/S0920-9964(97)88566-0
Nieder, A. (2016). The neuronal code for number. Nature Reviews. Neuroscience, 17(6), 366–382. https://doi.org/10.1038/nrn.2016.40
Nuerk, H. C., Moeller, K., Klein, E., Willmes, K., & Fischer, M. H. (2011). Extending the mental number line. Zeitschrift Für Psychologie. 219(1), 3–22. https://doi.org/10.1027/2151-2604/a000041
Nussbaumer, D., Grabner, R. H., & Stern, E. (2015). Neural efficiency in working memory tasks: The impact of task demand. Intelligence, 50, 196-208. https://doi.org/10.1016/j.intell.2015.04.004
Obersteiner, A., Dresler, T., Reiss, K., Vogel, A. C. M., Pekrun, R., and Fallgatter, A. J. (2010). Bringing brain imaging to the school to assess arithmetic problem solving: chances and limitations in combining educational and neuroscientific research. ZDM 42, 541–554. https://doi.org/10.1007/s11858-010-0256-7
Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human brain mapping, 25(1), 46-59. https://doi.org/10.1002/hbm.20131
Pammer, K., Korrel, H., & Bell, J. (2014). Visual distraction increases the detection of an unexpected object in inattentional blindness. Visual Cognition, 22(9-10), 1173-1183. https://doi.org/10.1080/13506285.2014.987859
Park, J., Hebrank, A., Polk, T. A., & Park, D. C. (2012). Neural dissociation of number from letter recognition and its relationship to parietal numerical processing. Journal of Cognitive Neuroscience, 24(1), 39-50. https://doi.org/10.1162/jocn_a_00085
Peirce, J. W. (2007). PsychoPy—psychophysics software in Python. Journal of neuroscience methods, 162(1-2), 8-13. https://doi.org/10.1016/j.jneumeth.2006.11.017
Peng, P., & Fuchs, D. (2016). A meta-analysis of working memory deficits in children with learning difficulties: Is there a difference between verbal domain and numerical domain?. Journal of learning disabilities, 49(1), 3-20. https://doi.org/10.1177/0022219414521667
Peters, L., & De Smedt, B. (2018). Arithmetic in the developing brain: A review of brain imaging studies. Developmental Cognitive Neuroscience, 30, 265-279. https://doi.org/10.1016/j.dcn.2017.05.002
Piazza, M., & Eger, E. (2016). Neural foundations and functional specificity of number representations. Neuropsychologia, 83, 257-273. https://doi.org/10.1016/j.neuropsychologia.2015.09.025
Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., ... & Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33-41. https://doi.org/10.1016/j.cognition.2010.03.012
Pollack, C., & Ashby, N. C. (2018). Where arithmetic and phonology meet: the meta-analytic convergence of arithmetic and phonological processing in the brain. Developmental cognitive neuroscience, 30, 251-264. https://doi.org/10.1016/j.dcn.2017.05.003
Pollonini, L., Olds, C., Abaya, H., Bortfeld, H., Beauchamp, M. S., & Oghalai, J. S. (2014). Auditory cortex activation to natural speech and simulated cochlear implant speech measured with functional near-infrared spectroscopy. Hearing research, 309, 84-93. https://doi.org/10.1016/j.heares.2013.11.007
Prado, J., Mutreja, R., Zhang, H., Mehta, R., Desroches, A. S., Minas, J. E., & Booth, J. R. (2011). Distinct representations of subtraction and multiplication in the neural systems for numerosity and language. Human brain mapping, 32(11), 1932-1947. https://doi.org/10.1002/hbm.21159
Richter, M. M., Zierhut, K. C., Dresler, T., Plichta, M. M., Ehlis, A. C., Reiss, K., ... & Fallgatter, A. J. (2009). Changes in cortical blood oxygenation during arithmetical tasks measured by near-infrared spectroscopy. Journal of Neural Transmission, 116(3), 267-273. https://doi.org/10.1007/s00702-008-0168-7
Rivera, S. M., Reiss, A., Eckert, M. A., and Menon, V. (2005). Developmental changes in mental arithmetic: evidence for increased functional specialization in the left inferior parietal cortex. Cerebral cortex, 15, 1779–1790. https://doi.org/10.1093/cercor/bhi055
Rodd, J. M., DavisPrinciples of Frontal Lobe Function - Google Книги, M. H., & Johnsrude, I. S. (2005). The neural mechanisms of speech comprehension: fMRI studies of semantic ambiguity. Cerebral Cortex, 15(8), 1261-1269. https://doi.org/10.1093/cercor/bhi009
Rogalsky, C., Matchin, W., & Hickok, G. (2008). Broca’s area, sentence comprehension, and working memory: an fMRI study. Frontiers in human neuroscience, 14. https://doi.org/10.3389/neuro.09.014.2008
Rolls, E. T., Joliot, M., & Tzourio-Mazoyer, N. (2015). Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. Neuroimage, 122, 1-5. https://doi.org/10.1016/j.neuroimage.2015.07.075
Rüsseler, J., Ye, Z., Gerth, I., Szycik, G. R., & Münte, T. F. (2018). Audio-visual speech perception in adult readers with dyslexia: an fMRI study. Brain imaging and behavior, 12(2), 357-368. https://doi.org/10.1007/s11682-017-9694-y
Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, B. (2017). Associations of nonsymbolic and symbolic numerical magnitude processing with mathematical competence: a meta-analysis. Developmental Science, 20(3). https://doi.org/10.1111/desc.12372
Seghier, M. L. (2013). The angular gyrus: multiple functions and multiple subdivisions. The Neuroscientist, 19(1), 43-61. https://doi.org/10.1177/1073858412440596
Skagenholt, M., Träff, U., Västfjäll, D., & Skagerlund, K. (2018). Examining the Triple Code Model in numerical cognition: An fMRI study. PLoS One, 13(6), e0199247. https://doi.org/10.1371/journal.pone.0199247
Sokolowski, H. M., Matejko, A. A., & Ansari, D. (2022). The role of the angular gyrus in arithmetic processing: A literature review. Brain Structure and Function, 1-12. https://doi.org/10.1007/s00429-022-02594-8
Soltanlou, M., Sitnikova, M. A., Nuerk, H. C., & Dresler, T. (2018). Applications of functional near-infrared spectroscopy (fNIRS) in studying cognitive development: The case of mathematics and language. Frontiers in psychology, 9, 277. https://doi.org/10.3389/fpsyg.2018.00277
Stuss, D. T., & Knight, R. T. (Eds.). (2013). Principles of frontal lobe function. Oxford University Press.
Themelis, G., Selb, J., Thaker, S., Stott, J. J., Custo, A., Boas, D., & Franceschini, M. A. (2004, April). Depth of arterial oscillation resolved with NIRS time and frequency domain. In Biomedical Topical Meeting (p. WF2). Optica Publishing Group. https://doi.org/10.1364/BIO.2004.WF2
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., ... & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273-289. https://doi.org/10.1006/nimg.2001.0978
Vanbinst, K., Ansari, D., Ghesquiere, P., & De Smedt, B. (2016). Symbolic Numerical Magnitude Pro-cessing Is as Important to Arithmetic as Phonological Awareness Is to Reading. PloS One, 11(3), e0151045. https://doi.org/10.1371/journal.pone.0151045
Venkatraman, V., Ansari, D. & Chee, M. W. L. (2005). Neural correlates of symbolic and non-symbolic arithmetic. Neuropsychologia 43, 744–53 (2005). https://doi.org/10.1016/j.neuropsychologia.2004.08.005
Verner, M., Herrmann, M. J., Troche, S. J., Roebers, C. M., & Rammsayer, T. H. (2013). Cortical oxygen consumption in mental arithmetic as a function of task difficulty: a near-infrared spectroscopy approach. Frontiers in human neuroscience, 7, 217. https://doi.org/10.3389/fnhum.2013.00217
Verschaffel, L., Greer, B., & De Corte, E. (2000). Making sense of word problems. Lisse, The Netherlands, 224, 224. Retrieved from https://dergipark.org.tr/en/download/article-file/91021
Vogel, S. E., & De Smedt, B. (2021). Developmental brain dynamics of numerical and arithmetic abilities. npj Science of Learning, 6(1), 1-11. https://doi.org/10.1038/s41539-021-00099-3
von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine and Child Neurology, 49(11), 868–873. https://doi.org/10.1111/j.1469- 8749.2007.00868.x
Waring, R. J., & Penner-Wilger, M. (2017). Estimation of importance: Relative contributions of symbolic and non-symbolic number systems to exact and approximate calculation. Journal of Numerical Cognition, 2(3), 202-219. https://doi.org/10.5964/jnc.v2i3.9
Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1-B11. https://doi.org/10.1016/S0010-0277(99)00066-9
Ye, J. C., Tak, S., Jang, K. E., Jung, J., & Jang, J. (2009). NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy. Neuroimage, 44(2), 428-447. https://doi.org/10.1016/j.neuroimage.2008.08.036
Yi-Rong, N., Si-Yun, S., Zhou-Yi, G., Si-Run, L., Yun, B., Song-Hao, L., & Chan, W. Y. (2011). Dissociated brain organization for two-digit addition and subtraction: An fMRI investigation. Brain Research Bulletin, 86(5-6), 395-402. https://doi.org/10.1016/j.brainresbull.2011.08.016
Yücel, M. A., Lühmann, A. V., Scholkmann, F., Gervain, J., Dan, I., Ayaz, H., ... & Wolf, M. (2021). Best practices for fNIRS publications. Neurophotonics, 8(1), 012101. https://doi.org/10.1117/1.nph.8.1.019802
Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2001). Neural correlates of simple and complex mental calculation. Neuroimage, 13(2), 314-327. https://doi.org/10.1006/nimg.2000.0697
Zamarian, L., Ischebeck, A., & Delazer, M. (2009). Neuroscience of learning arithmetic—Evidence from brain imaging studies. Neuroscience & Biobehavioral Reviews, 33(6), 909-925. https://doi.org/10.1016/j.neubiorev.2009.03.005
Zimeo Morais, G. A., Balardin, J. B., & Sato, J. R. (2018). fNIRS Optodes’ Location Decider (fOLD): a toolbox for probe arrangement guided by brain regions-of-interest. Scientific reports, 8(1), 1-11. https://doi.org/10.1038/s41598-018-21716-z
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 Maria A. Sitnikova, Julia A. Marakshina, Timofey V. Adamovich, Grigory O. Pronin, Rustam G. Asadullaev

This work is licensed under a Creative Commons Attribution 4.0 International License.
Metrics
Plaudit
Accepted 2023-03-19
Published 2023-04-20