Investigation of the Relationship Between Orientation Discrimination Thresholds, Autistic, and Schizotypal Personality Traits

Authors

DOI:

https://doi.org/10.23947/2334-8496-2023-11-3-375-387

Keywords:

Excitation inhibition balance, Orientation Discrimination Task, Autistic personality traits, Schizotypal personality traits, Visual Perception

Abstract

Imbalances in cortical excitation and inhibition (E-I) have been implicated in both autism spectrum conditions (ASC) and schizophrenia spectrum conditions (SSC). However, most studies investigate these clinical conditions independently, possibly due to the difficulty of obtaining comorbid clinical populations. As such, the current study investigated the relationship between performance in the orientation discrimination task “ODT” as a potential proxy for E-I balance and the autistic (as assessed by Autism Spectrum Quotient “AQ”) and schizotypal personality traits (as assessed by Schizotypal Personality Questionnaire-Brief “SPQ-BR”) in the general population. 87 healthy adult volunteers participated in the study. We found that high autistic personality traits are associated with enhanced performance in the oblique condition of ODT. In contrast, high schizotypal personality traits are associated with poor performance in the vertical condition of ODT. Such associations support the suggested disruption of cortical E-I balance in ASC and SSC.

Downloads

Download data is not yet available.

References

Abbasi, S., Wolff, A., Çatal, Y., & Northoff, G. (2023). Increased noise relates to abnormal excitation-inhibition balance in schizophrenia: a combined empirical and computational study. Cerebral Cortex, 33(20), 10477-10491. https://doi.org/10.1093/cercor/bhad297 DOI: https://doi.org/10.1093/cercor/bhad297

Abu-Akel, A., Apperly, I., Spaniol, M. M., Geng, J. J., & Mevorach, C. (2018). Diametric effects of autism tendencies and psychosis proneness on attention control irrespective of task demands. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-26821-7 DOI: https://doi.org/10.1038/s41598-018-26821-7

Abuleil, D., McCulloch, D. L., & Thompson, B. (2019). Older adults exhibit greater visual cortex inhibition and reduced visual cortex plasticity compared to younger adults. Frontiers in Neuroscience, 13, 607. https://doi.org/10.3389/fnins.2019.00607 DOI: https://doi.org/10.3389/fnins.2019.00607

Anticevic, A., & Lisman, J. (2017). How Can Global Alteration of Excitation/Inhibition Balance Lead to the Local Dysfunctions That Underlie Schizophrenia? Biological Psychiatry, 81(10), 818–820. https://doi.org/10.1016/j.biopsych.2016.12.006 DOI: https://doi.org/10.1016/j.biopsych.2016.12.006

Appelle, S. (1972). Perception and discrimination as a function of stimulus orientation: The “oblique effect” in man and animals. Psychological Bulletin, 78(4), 266–278. https://doi.org/10.1037/h0033117 DOI: https://doi.org/10.1037/h0033117

Austin, E. J. (2005). Personality correlates of the broader autism phenotype as assessed by the Autism Spectrum Quotient (AQ). Personality and individual differences, 38(2), 451-460. https://doi.org/10.1016/j.paid.2004.04.022 DOI: https://doi.org/10.1016/j.paid.2004.04.022

Banerjee, A. (2012). Cross-cultural variance of schizophrenia in symptoms, diagnosis and treatment. Georgetown University journal of health sciences, 6(2), 18-24.

Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The autism-spectrum quotient (AQ): Evidence from asperger syndrome/high-functioning autism, malesand females, scientists and mathematicians. Journal of autism and developmental disorders, 31(1), 5-17. https://doi.org/10.1023/A:1005653411471 DOI: https://doi.org/10.1023/A:1005653411471

Bin Dawood, A., Dickinson, A., Aytemur, A., Howarth, C., Milne, E., & Jones, M. (2020). Investigating the Effects of tDCS on Visual Orientation Discrimination Task Performance: “the Possible Influence of Placebo”. Journal of Cognitive Enhancement, 4(3), 235-249. https://doi.org/10.1007/s41465-019-00154-3 DOI: https://doi.org/10.1007/s41465-019-00154-3

Bonnel, A., McAdams, S., Smith, B., Berthiaume, C., Bertone, A., Ciocca, V., Burack, J. A., & Mottron, L. (2010). Enhanced pure-tone pitch discrimination among persons with autism but not Asperger syndrome. Neuropsychologia, 48(9), 2465–2475. https://doi.org/10.1016/j.neuropsychologia.2010.04.020 DOI: https://doi.org/10.1016/j.neuropsychologia.2010.04.020

Bonnel, A., Mottron, L., Peretz, I., Trudel, M., Gallun, E., & Bonnel, A.M. (2003). Enhanced Pitch Sensitivity in Individuals with Autism: A Signal Detection Analysis. Journal of Cognitive Neuroscience, 15(2), 226–235. https://doi.org/10.1162/089892903321208169 DOI: https://doi.org/10.1162/089892903321208169

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436. https://doi.org/10.1163/156856897x00357 DOI: https://doi.org/10.1163/156856897X00357

Burbach, J. P. H., & van der Zwaag, B. (2009). Contact in the genetics of autism and schizophrenia. Trends in Neurosciences, 32(2), 69–72. https://doi.org/10.1016/j.tins.2008.11.002 DOI: https://doi.org/10.1016/j.tins.2008.11.002

Chisholm, K., Lin, A., Abu-Akel, A., & Wood, S. J. (2015). The association between autism and schizophrenia spectrum disorders: A review of eight alternate models of co-occurrence. Neuroscience & Biobehavioral Reviews, 55, 173-183., 173–183. https://doi.org/10.1016/j.neubiorev.2015.04.012 DOI: https://doi.org/10.1016/j.neubiorev.2015.04.012

Cohen, A. S., Matthews, R. A., Najolia, G. M., & Brown, L. A. (2010). Toward a More Psychometrically Sound Brief Measure of Schizotypal Traits: Introducing the SPQ-Brief Revised. Journal of Personality Disorders, 24(4), 516–537. https://doi.org/10.1521/pedi.2010.24.4.516 DOI: https://doi.org/10.1521/pedi.2010.24.4.516

Cousijn, H., Haegens, S., Wallis, G., Near, J., Stokes, M. G., Harrison, P. J., & Nobre, A. C. (2014). Resting GABA and glutamate concentrations do not predict visual gamma frequency or amplitude. Proceedings of the National Academy of Sciences, 111(25), 9301–9306. https://doi.org/10.1073/pnas.1321072111 DOI: https://doi.org/10.1073/pnas.1321072111

Del Giudice, M., Angeleri, R., Brizio, A., & Elena, M. R. (2010). The evolution of autistic-like and schizotypal traits: A sexual selection hypothesis. Frontiers in Psychology, 1, 41. https://doi.org/10.3389/fpsyg.2010.00041 DOI: https://doi.org/10.3389/fpsyg.2010.00041

Del Giudice, M., Klimczuk, A. C. E., Traficonte, D. M., & Maestripieri, D. (2014). Autistic-like and schizotypal traits in a life history perspective: diametrical associations with impulsivity, sensation seeking, and sociosexual behavior. Evolution and Human Behavior, 35(5), 415–424. https://doi.org/10.1016/j.evolhumbehav.2014.05.007 DOI: https://doi.org/10.1016/j.evolhumbehav.2014.05.007

Dhand, N., & Khatkar, M. (2014). Statulator: An online statistical calculator. Sample Size Calculator for Estimating a Single Proportion.

Dickinson, A., Bruyns-Haylett, M., Jones, M., & Milne, E. (2015). Increased peak gamma frequency in individuals with higher levels of autistic traits. European Journal of Neuroscience, 41(8), 1095–1101. Portico. https://doi.org/10.1111/ejn.12881 DOI: https://doi.org/10.1111/ejn.12881

Dickinson, A., Bruyns-Haylett, M., Smith, R., Jones, M., & Milne, E. (2016). Superior orientation discrimination and increased peak gamma frequency in autism spectrum conditions. Journal of Abnormal Psychology, 125(3), 412–422. https://doi.org/10.1037/abn0000148 DOI: https://doi.org/10.1037/abn0000148

Dickinson, A., Jones, M., & Milne, E. (2014). Oblique Orientation Discrimination Thresholds Are Superior in Those with a High Level of Autistic Traits. Journal of Autism and Developmental Disorders, 44(11), 2844–2850. https://doi.org/10.1007/s10803-014-2147-1 DOI: https://doi.org/10.1007/s10803-014-2147-1

Dickinson, A., Jones, M., & Milne, E. (2016). Measuring neural excitation and inhibition in autism: Different approaches, different findings and different interpretations. Brain Research, 1648, 277–289. https://doi.org/10.1016/j.brainres.2016.07.011 DOI: https://doi.org/10.1016/j.brainres.2016.07.011

Dinsdale, N. L., Hurd, P. L., Wakabayashi, A., Elliot, M., & Crespi, B. J. (2013). How Are Autism and Schizotypy Related? Evidence from a Non-Clinical Population. PLoS ONE, 8(5), e63316. https://doi.org/10.1371/journal.pone.0063316 DOI: https://doi.org/10.1371/journal.pone.0063316

Edden, R. A. E., Muthukumaraswamy, S. D., Freeman, T. C. A., & Singh, K. D. (2009). Orientation Discrimination Performance Is Predicted by GABA Concentration and Gamma Oscillation Frequency in Human Primary Visual Cortex. The Journal of Neuroscience, 29(50), 15721–15726. https://doi.org/10.1523/jneurosci.4426-09.2009 DOI: https://doi.org/10.1523/JNEUROSCI.4426-09.2009

Ford, T. C., & Crewther, D. P. (2014). Factor Analysis Demonstrates a Common Schizoidal Phenotype within Autistic and Schizotypal Tendency: Implications for Neuroscientific Studies. Frontiers in Psychiatry, 5, 117. https://doi.org/10.3389/fpsyt.2014.00117 DOI: https://doi.org/10.3389/fpsyt.2014.00117

Ford, T. C., Apputhurai, P., Meyer, D., & Crewther, D. P. (2017). Confirmatory factor analysis of autism and schizophrenia spectrum traits. Personality and Individual Differences, 110, 80–84. https://doi.org/10.1016/j.paid.2017.01.033 DOI: https://doi.org/10.1016/j.paid.2017.01.033

Ford, T. C., Apputhurai, P., Meyer, D., & Crewther, D. P. (2018). Cluster analysis reveals subclinical sub-groups with shared autistic and schizotypal traits. Psychiatry Research, 265, 111–117. https://doi.org/10.1016/j.psychres.2018.04.037 DOI: https://doi.org/10.1016/j.psychres.2018.04.037

Freyberg, J., Robertson, C., & Baron-Cohen, S. (2015). Atypical Binocular Rivalry Dynamics of Simple and Complex Stimuli in Autism. Journal of Vision, 15(12), 643-643. https://doi.org/10.1167/15.12.643 DOI: https://doi.org/10.1167/15.12.643

Garin, O. (2014a). Ceiling Effect. In A. C. Michalos (Ed.), Encyclopedia of Quality of Life and Well-Being Research (pp. 631-633). Springer Netherlands. https://doi.org/10.1007/978-94-007-0753-5_296 DOI: https://doi.org/10.1007/978-94-007-0753-5_296

Garin, O. (2014b). Floor Effect. In A. C. Michalos (Ed.), Encyclopedia of Quality of Life and Well-Being Research (pp. 2300-2300). Springer Netherlands. https://doi.org/10.1007/978-94-007-0753-5_1059 DOI: https://doi.org/10.1007/978-94-007-0753-5_1059

Goto, N., Yoshimura, R., Moriya, J., Kakeda, S., Ueda, N., Ikenouchi-Sugita, A., Umene-Nakano, W., Hayashi, K., Oonari, N., Korogi, Y., & Nakamura, J. (2009). Reduction of brain γ-aminobutyric acid (GABA) concentrations in early-stage schizophrenia patients: 3T Proton MRS study. Schizophrenia Research, 112(1–3), 192–193. https://doi.org/10.1016/j.schres.2009.04.026 DOI: https://doi.org/10.1016/j.schres.2009.04.026

Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology, 195(1), 215–243. https://doi.org/10.1113/jphysiol.1968.sp008455 DOI: https://doi.org/10.1113/jphysiol.1968.sp008455

Hurst, R. M., Nelson-Gray, R. O., Mitchell, J. T., & Kwapil, T. R. (2006). The Relationship of Asperger’s Characteristics and Schizotypal Personality Traits in a Non-clinical Adult Sample. Journal of Autism and Developmental Disorders, 37(9), 1711–1720. https://doi.org/10.1007/s10803-006-0302-z DOI: https://doi.org/10.1007/s10803-006-0302-z

Katzner, S., Busse, L., & Carandini, M. (2011). GABAAInhibition Controls Response Gain in Visual Cortex. The Journal of Neuroscience, 31(16), 5931–5941. https://doi.org/10.1523/jneurosci.5753-10.2011 DOI: https://doi.org/10.1523/JNEUROSCI.5753-10.2011

Kim, H. U. (2012). Autism across cultures: rethinking autism. Disability & Society, 27(4), 535–545. https://doi.org/10.1080/09687599.2012.659463 DOI: https://doi.org/10.1080/09687599.2012.659463

King, B. H., & Lord, C. (2011). Is schizophrenia on the autism spectrum? Brain Research, 1380, 34–41. https://doi.org/10.1016/j.brainres.2010.11.031 DOI: https://doi.org/10.1016/j.brainres.2010.11.031

King, B. R., Rumpf, J. J., Verbaanderd, E., Heise, K. F., Dolfen, N., Sunaert, S., . . . Puts, N. A. (2020). Baseline sensorimotor GABA levels shape neuroplastic processes induced by motor learning in older adults. Human brain mapping, 41(13), 3680-3695. https://doi.org/10.1002/hbm.25041 DOI: https://doi.org/10.1002/hbm.25041

Kujala, J., Jung, J., Bouvard, S., Lecaignard, F., Lothe, A., Bouet, R., Ciumas, C., Ryvlin, P., & Jerbi, K. (2015). Gamma oscillations in V1 are correlated with GABAA receptor density: A multi-modal MEG and Flumazenil-PET study. Scientific Reports, 5(1). https://doi.org/10.1038/srep16347 DOI: https://doi.org/10.1038/srep16347

Kurcyus, K., Annac, E., Hanning, N. M., Harris, A. D., Oeltzschner, G., Edden, R., & Riedl, V. (2018). Opposite Dynamics of GABA and Glutamate Levels in the Occipital Cortex during Visual Processing. The Journal of Neuroscience, 38(46), 9967–9976. https://doi.org/10.1523/jneurosci.1214-18.2018 DOI: https://doi.org/10.1523/JNEUROSCI.1214-18.2018

Lam, N. H., Borduqui, T., Hallak, J., Roque, A., Anticevic, A., Krystal, J. H., ... & Murray, J. D. (2022). Effects of altered excitation-inhibition balance on decision making in a cortical circuit model. Journal of Neuroscience, 42(6), 1035-1053. https://doi.org/10.1523/JNEUROSCI.1371-20.2021 DOI: https://doi.org/10.1523/JNEUROSCI.1371-20.2021

Leek, M. R. (2001). Adaptive procedures in psychophysical research. Perception & Psychophysics, 63(8), 1279–1292. https://doi.org/10.3758/bf03194543 DOI: https://doi.org/10.3758/BF03194543

Leventhal, A. G., Wang, Y., Pu, M., Zhou, Y., & Ma, Y. (2003). GABA and Its Agonists Improved Visual Cortical Function in Senescent Monkeys. Science, 300(5620), 812–815. https://doi.org/10.1126/science.1082874 DOI: https://doi.org/10.1126/science.1082874

Li, B., Peterson, M. R., & Freeman, R. D. (2003). Oblique Effect: A Neural Basis in the Visual Cortex. Journal of Neurophysiology, 90(1), 204–217. https://doi.org/10.1152/jn.00954.2002 DOI: https://doi.org/10.1152/jn.00954.2002

Lisman, J. (2012). Excitation, inhibition, local oscillations, or large-scale loops: what causes the symptoms of schizophrenia? Current Opinion in Neurobiology, 22(3), 537–544. https://doi.org/10.1016/j.conb.2011.10.018 DOI: https://doi.org/10.1016/j.conb.2011.10.018

Mansfield, R. J. W. (1974). Neural Basis of Orientation Perception in Primate Vision. Science, 186(4169), 1133–1135. https://doi.org/10.1126/science.186.4169.1133 DOI: https://doi.org/10.1126/science.186.4169.1133

Mohan, Y. S., Viswanathan, S., Jayakumar, J., Lloyd, E. K., & Vidyasagar, T. R. (2022). Mechanism underpinning the sharpening of orientation and spatial frequency selectivities in the tree shrew (Tupaia belangeri) primary visual cortex. Brain Structure and Function, 227(4), 1265-1278. https://doi.org/10.1007/s00429-021-02445-y DOI: https://doi.org/10.1007/s00429-021-02445-y

Mukerji, A., Byrne, K. N., Yang, E., Levi, D. M., & Silver, M. A. (2022). Visual cortical γ− aminobutyric acid and perceptual suppression in amblyopia. Frontiers in Human Neuroscience, 16, 949395. https://doi.org/10.3389/fnhum.2022.949395 DOI: https://doi.org/10.3389/fnhum.2022.949395

Nenadić, I., Meller, T., Evermann, U., Schmitt, S., Pfarr, J.K., Abu-Akel, A., & Grezellschak, S. (2021). Subclinical schizotypal vs. autistic traits show overlapping and diametrically opposed facets in a non-clinical population. Schizophrenia Research, 231, 32–41. https://doi.org/10.1016/j.schres.2021.02.018 DOI: https://doi.org/10.1016/j.schres.2021.02.018

Orban, G. A., Vandenbussche, E., & Vogels, R. (1984). Human orientation discrimination tested with long stimuli. Vision Research, 24(2), 121–128. https://doi.org/10.1016/0042-6989(84)90097-x DOI: https://doi.org/10.1016/0042-6989(84)90097-X

Petitet, P., Spitz, G., Emir, U. E., Johansen-Berg, H., & O’Shea, J. (2021). Age-related decline in cortical inhibitory tone strengthens motor memory. NeuroImage, 245, 118681. https://doi.org/10.1016/j.neuroimage.2021.118681 DOI: https://doi.org/10.1016/j.neuroimage.2021.118681

Phillips, W. L. (2019). Cross-Cultural Differences in Visual Perception of Color, Illusions, Depth, and Pictures. Cross-Cultural Psychology, 287–308. Portico. https://doi.org/10.1002/9781119519348.ch13 DOI: https://doi.org/10.1002/9781119519348.ch13

Pilowsky, T., Yirmiya, N., Arbelle, S., & Mozes, T. (2000). Theory of mind abilities of children with schizophrenia, children with autism, and normally developing children. Schizophrenia Research, 42(2), 145–155. https://doi.org/10.1016/s0920-9964(99)00101-2 DOI: https://doi.org/10.1016/S0920-9964(99)00101-2

Pitchaimuthu, K., Wu, Q. Z., Carter, O., Nguyen, B. N., Ahn, S., Egan, G. F., & McKendrick, A. M. (2017). Occipital GABA levels in older adults and their relationship to visual perceptual suppression. Scientific Reports, 7(1), 14231. https://doi.org/10.1038/s41598-017-14577-5 DOI: https://doi.org/10.1038/s41598-017-14577-5

Ringach, D. L. (1998). Tuning of orientation detectors in human vision. Vision Research, 38(7), 963–972. https://doi.org/10.1016/s0042-6989(97)00322-2 DOI: https://doi.org/10.1016/S0042-6989(97)00322-2

Robertson, C. E., Kravitz, D. J., Freyberg, J., Baron-Cohen, S., & Baker, C. I. (2013). Slower Rate of Binocular Rivalry in Autism. The Journal of Neuroscience, 33(43), 16983–16991. https://doi.org/10.1523/jneurosci.0448-13.2013 DOI: https://doi.org/10.1523/JNEUROSCI.0448-13.2013

Rokem, A., Yoon, J. H., Ooms, R. E., Maddock, R. J., Minzenberg, M. J., & Silver, M. A. (2011). Broader Visual Orientation Tuning in Patients with Schizophrenia. Frontiers in Human Neuroscience, 5, 127. https://doi.org/10.3389/fnhum.2011.00127 DOI: https://doi.org/10.3389/fnhum.2011.00127

Russell-Smith, S. N., Maybery, M. T., & Bayliss, D. M. (2010). Are the Autism and Positive Schizotypy Spectra Diametrically Opposed in Local Versus Global Processing? Journal of Autism and Developmental Disorders, 40(8), 968–977. https://doi.org/10.1007/s10803-010-0945-7 DOI: https://doi.org/10.1007/s10803-010-0945-7

Russell-Smith, S. N., Maybery, M. T., & Bayliss, D. M. (2011). Relationships between autistic-like and schizotypy traits: An analysis using the Autism Spectrum Quotient and Oxford-Liverpool Inventory of Feelings and Experiences. Personality and Individual Differences, 51(2), 128–132. https://doi.org/10.1016/j.paid.2011.03.027 DOI: https://doi.org/10.1016/j.paid.2011.03.027

Shaw, A. D., Knight, L., Freeman, T. C. A., Williams, G. M., Moran, R. J., Friston, K. J., Walters, J. T. R., & Singh, K. D. (2019). Oscillatory, Computational, and Behavioral Evidence for Impaired GABAergic Inhibition in Schizophrenia. Schizophrenia Bulletin. https://doi.org/10.1093/schbul/sbz066 DOI: https://doi.org/10.1093/schbul/sbz066

Sillito, A. M. (1975). The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. The Journal of Physiology, 250(2), 305–329. https://doi.org/10.1113/jphysiol.1975.sp011056 DOI: https://doi.org/10.1113/jphysiol.1975.sp011056

Snijders, T. M., Milivojevic, B., & Kemner, C. (2013). Atypical excitation–inhibition balance in autism captured by the gamma response to contextual modulation. NeuroImage: Clinical, 3, 65–72. https://doi.org/10.1016/j.nicl.2013.06.015 DOI: https://doi.org/10.1016/j.nicl.2013.06.015

Trakoshis, S., Martínez-Cañada, P., Rocchi, F., Canella, C., You, W., Chakrabarti, B., Ruigrok, A. N. V., Bullmore, E. T., Suckling, J., Markicevic, M., Zerbi, V., Baron-Cohen, S., Gozzi, A., Lai, M.C., Panzeri, S., & Lombardo, M. V. (2020). Intrinsic excitation-inhibition imbalance affects medial prefrontal cortex differently in autistic men versus women. Elife, 9, e55684. https://doi.org/10.1101/2020.01.16.909531 DOI: https://doi.org/10.7554/eLife.55684

Treutwein, B. (1995). Adaptive psychophysical procedures. Vision Research, 35(17), 2503–2522. https://doi.org/10.1016/0042-6989(95)00016-x DOI: https://doi.org/10.1016/0042-6989(95)00016-S

Vogels, R., & Orban, G. A. (1985). The effect of practice on the oblique effect in line orientation judgments. Vision Research, 25(11), 1679–1687. https://doi.org/10.1016/0042-6989(85)90140-3 DOI: https://doi.org/10.1016/0042-6989(85)90140-3

Volkmar, F. R., & Cohen, D. J. (1991). Comorbid association of autism and schizophrenia. The American journal of psychiatry, 148(12), 1705-1707. https://doi.org/10.1176/ajp.148.12.1705 DOI: https://doi.org/10.1176/ajp.148.12.1705

Wood, S. J. (2017). Autism and schizophrenia: One, two or many disorders? British Journal of Psychiatry, 210(4), 241–242. https://doi.org/10.1192/bjp.bp.116.193490 DOI: https://doi.org/10.1192/bjp.bp.116.193490

Xia, J., Tang, Y., Liang, Z., Yang, Y., Li, G., & Zhou, Y. (2013). GABA increases stimulus selectivity of neurons in primary visual cortices of cats chronically treated with morphine. Neuroscience, 241, 116–125. https://doi.org/10.1016/j.neuroscience.2013.03.034 DOI: https://doi.org/10.1016/j.neuroscience.2013.03.034

Yoon, J. H., Maddock, R. J., Rokem, A., Silver, M. A., Minzenberg, M. J., Ragland, J. D., & Carter, C. S. (2010). GABA Concentration Is Reduced in Visual Cortex in Schizophrenia and Correlates with Orientation-Specific Surround Suppression. The Journal of Neuroscience, 30(10), 3777–3781. https://doi.org/10.1523/jneurosci.6158-09.2010 DOI: https://doi.org/10.1523/JNEUROSCI.6158-09.2010

Yoon, J. H., Rokem, A. S., Silver, M. A., Minzenberg, M. J., Ursu, S., Ragland, J. D., & Carter, C. S. (2009). Diminished Orientation-Specific Surround Suppression of Visual Processing in Schizophrenia. Schizophrenia Bulletin, 35(6), 1078–1084. https://doi.org/10.1093/schbul/sbp064 DOI: https://doi.org/10.1093/schbul/sbp064

Zhou, H., Yang, H., Gong, J., Cheung, E. F. C., Gooding, D. C., Park, S., & Chan, R. C. K. (2019). Revisiting the overlap between autistic and schizotypal traits in the non-clinical population using meta-analysis and network analysis. Schizophrenia Research, 212, 6–14. https://doi.org/10.1016/j.schres.2019.07.050 DOI: https://doi.org/10.1016/j.schres.2019.07.050

Downloads

Published

2023-12-28

How to Cite

Bin Dawood, A., Dickinson, A., & Jones, M. (2023). Investigation of the Relationship Between Orientation Discrimination Thresholds, Autistic, and Schizotypal Personality Traits. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 11(3), 375–387. https://doi.org/10.23947/2334-8496-2023-11-3-375-387

Metrics

Plaudit

Received 2023-04-02
Accepted 2023-09-04
Published 2023-12-28