Base Rate Neglect Bias: Can it be Observed in HRM Decisions and Can it be Decreased by Visually Presenting the Base Rates in HRM Decisions?

Authors

DOI:

https://doi.org/10.23947/2334-8496-2024-12-1-119-132

Keywords:

base rate neglect, cognitive bias, HRM, decision-making, ecological rationality

Abstract

The aim of this experimental research was to explore if the future HR managers are susceptible to the base rate neglect (BRN) bias and if the visual presentation of the base rates improves their reasoning. The BRN bias is a tendency to disregard a priori probabilities that are explicitly given for the class of observed objects. In this study, BRN is seen as the case of decision-making bias in the work-related context. Although it is inevitable part of the decision-making processes concerning employees`, the topic is not sufficiently studied. A total of 65 participants, enrolled in the master studies of HRM, were subjected to 4 different types of BRN tasks, in which five different HR activities were described. They were varied within subjects, representativeness of description, and format of base rate. Within each task there were five different situations that make 20 tasks in total. The two-way repeated-measures ANOVA revealed that the proportion of biased answers was significantly higher on the representative tasks when the tasks presented visually, with no interaction between representativeness and format of task. Results are in line with previous studies that observed an effect of BRN on decision-making process. Yet, unexpectedly, visual presentation of base rates did not facilitate unbiased reasoning implying that some other form of presentation might be more appropriate for the task.

Downloads

Download data is not yet available.

References

Ajzen, I. (1977). Intuitive theories of events and the effects of base-rate information on prediction. Journal of Personality and Social Psychology, 35(5), 303–314. https://doi.org/10.1037/0022-3514.35.5.303 DOI: https://doi.org/10.1037//0022-3514.35.5.303

Anderson, S. L., Adams, G., & Plaut, V. C. (2008). The cultural grounding of personal relationship: The importance of attractiveness in everyday life. Journal of Personality and Social Psychology, 95(2), 352–368. https://doi.org/10.1037/0022-3514.95.2.352 DOI: https://doi.org/10.1037/0022-3514.95.2.352

Argote, L., Devadas, R., & Melone, N. (1990). The base-rate fallacy: Contrasting processes and outcomes of group and individual judgment. Organizational Behavior and Human Decision Processes, 46(2), 296-310. https://doi.org/10.1016/0749-5978(90)90034-7 DOI: https://doi.org/10.1016/0749-5978(90)90034-7

Argote, L., Seabright, M. A., & Dyer, L. (1986). Individual versus group use of base-rate and individuating information. Organizational Behavior and Human Decision Processes, 38(1), 65-75. https://doi.org/10.1016/0749-5978(86)90026-9 DOI: https://doi.org/10.1016/0749-5978(86)90026-9

Auster, E. R., & Prasad, A. (2016). Why do women still not make it to the top? Dominant organizational ideologies and biases by promotion committees limit opportunities to destination positions. Sex Roles, 75, 177-196. https://doi.org/10.1007/s11199-016-0607-0 DOI: https://doi.org/10.1007/s11199-016-0607-0

Barbey, A. K., & Sloman, S. A. (2007). Base-rate respect: From ecological rationality to dual processes. Behavioral and Brain Sciences, 30(3), 241-254. https://doi.org/10.1017/S0140525X07001653 DOI: https://doi.org/10.1017/S0140525X07001653

Bar-Hillel, M. (1980). The base-rate fallacy in probability judgments. Acta Psychologica, 44(3), 211-233. https://doi.org/10.1016/0001-6918(80)90046-3 DOI: https://doi.org/10.1016/0001-6918(80)90046-3

Battaglio Jr, R. P., Belardinelli, P., Bellé, N., & Cantarelli, P. (2019). Behavioral public administration ad fontes: A synthesis of research on bounded rationality, cognitive biases, and nudging in public organizations. Public Administration Review, 79(3), 304-320. https://doi.org/10.1111/puar.12994 DOI: https://doi.org/10.1111/puar.12994

Bellé, N., Cantarelli, P., & Belardinelli, P. (2017). Cognitive biases in performance appraisal: Experimental evidence on anchoring and halo effects with public sector managers and employees. Review of Public Personnel Administration, 37(3), 275-294. https://doi.org/10.1177/0734371X17704891 DOI: https://doi.org/10.1177/0734371X17704891

Betsch, T., Biel, G. M., Eddelbüttel, C., & Mock, A. (1998). Natural sampling and base-rate neglect. European Journal of Social Psychology, 28(2), 269-273. https://doi.org/10.1002/(SICI)1099-0992(199803/04)28:2<269::AID-EJSP872>3.0.CO;2-U DOI: https://doi.org/10.1002/(SICI)1099-0992(199803/04)28:2<269::AID-EJSP872>3.0.CO;2-U

Cantarelli, P., Belle, N., & Belardinelli, P. (2020). Behavioral public HR: Experimental evidence on cognitive biases and debiasing interventions. Review of Public Personnel Administration, 40(1), 56-81. https://doi.org/10.1177/0734371X18778090 DOI: https://doi.org/10.1177/0734371X18778090

Ceschi, A., Costantini, A., Sartori, R., Weller, J., & Di Fabio, A. (2019). Dimensions of decision-making: An evidence-based classification of heuristics and biases. Personality and Individual Differences, 146, 188-200. https://doi.org/10.1016/j.paid.2018.07.033 DOI: https://doi.org/10.1016/j.paid.2018.07.033

Cosmides, L., & Tooby, J. (1996). Are humans good intuitive statisticians after all? Rethinking some conclusions from the literature on judgment under uncertainty. cognition, 58(1), 1-73. https://doi.org/10.1016/0010-0277(95)00664-8 DOI: https://doi.org/10.1016/0010-0277(95)00664-8

Dagger, T. S., Danaher, P. J., Sweeney, J. C., & McColl-Kennedy, J. R. (2013). Selective halo effects arising from improving the interpersonal skills of frontline employees. Journal of Service Research, 16(4), 488-502. https://doi.org/10.1177/1094670513481406 DOI: https://doi.org/10.1177/1094670513481406

Dahlman, C., Zenker, F., & Sarwar, F. (2016). Miss rate neglect in legal evidence. Law, Probability and Risk, 15(4), 239-250. https://doi.org/10.1093/lpr/mgw007 DOI: https://doi.org/10.1093/lpr/mgw007

Dale, S. (2015). Heuristics and biases: The science of decision-making. Business Information Review, 32(2), 93-99. https://doi.org/10.1177/0266382115592536 DOI: https://doi.org/10.1177/0266382115592536

De Neys, W., & Pennycook, G. (2019). Logic, fast and slow: Advances in dual-process theorizing. Current directions in psychological science, 28(5), 503-509. https://doi.org/10.1177/0963721419855658 DOI: https://doi.org/10.1177/0963721419855658

Derous, E., & Ryan, A. M. (2019). When your resume is (not) turning you down: Modelling ethnic bias in resume screening. Human Resource Management Journal, 29(2), 113-130. https://doi.org/10.1111/1748-8583.12217 DOI: https://doi.org/10.1111/1748-8583.12217

Dundon, N. M., Colas, J. T., Garrett, N., Babenko, V., Rizor, E., Yang, D., ... & Grafton, S. T. (2023). Decision heuristics in contexts integrating action selection and execution. Scientific Reports, 13(1), 6486. https://doi.org/10.1038/s41598-023-33008-2 DOI: https://doi.org/10.1038/s41598-023-33008-2

Erlandsson, A. (2019). Do men favor men in recruitment? A field experiment in the Swedish labor market. Work and Occupations, 46(3), 239-264. https://doi.org/10.1177/0730888419849467 DOI: https://doi.org/10.1177/0730888419849467

Gigerenzer, G. (2008). Why heuristics work. Perspectives on psychological science, 3(1), 20-29. https://doi.org/10.1111/j.1745-6916.2008.00058.x DOI: https://doi.org/10.1111/j.1745-6916.2008.00058.x

Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: frequency formats. Psychological review, 102(4), 684-704. https://doi.org/10.1037/0033-295X.102.4.684 DOI: https://doi.org/10.1037//0033-295X.102.4.684

Goodie, A. S., & Fantino, E. (1999). What does and does not alleviate base-rate neglect under direct experience. Journal of Behavioral Decision Making, 12(4), 307-335. https://doi.org/10.1002/(SICI)1099-0771(199912)12:4<307::AID-BDM324>3.0.CO;2-H DOI: https://doi.org/10.1002/(SICI)1099-0771(199912)12:4<307::AID-BDM324>3.0.CO;2-H

Guillén, L., Mayo, M., & Karelaia, N. (2018). Appearing self-confident and getting credit for it: Why it may be easier for men than women to gain influence at work. Human Resource Management, 57(4), 839-854. https://doi.org/10.1002/hrm.21857 DOI: https://doi.org/10.1002/hrm.21857

Hafenbrädl, S., Waeger, D., Marewski, J. N., & Gigerenzer, G. (2016). Applied decision making with fast-and-frugal heuristics. Journal of Applied Research in Memory and Cognition, 5(2), 215-231. https://doi.org/10.1016/j.jarmac.2016.04.011 DOI: https://doi.org/10.1016/j.jarmac.2016.04.011

Hoffrage, U., Gigerenzer, G., Krauss, S., & Martignon, L. (2002). Representation facilitates reasoning: What natural frequencies are and what they are not. Cognition, 84(3), 343-352. https://doi.org/10.1016/S0010-0277(02)00050-1 DOI: https://doi.org/10.1016/S0010-0277(02)00050-1

Hu, Z., & Wang, X. T. (2014). Trust or not: Heuristics for making trust-based choices in HR management. Journal of Business Research, 67(8), 1710-1716. https://doi.org/10.1016/j.jbusres.2014.02.017 DOI: https://doi.org/10.1016/j.jbusres.2014.02.017

Huffcutt, A. I., Van Iddekinge, C. H., & Roth, P. L. (2011). Understanding applicant behavior in employment interviews: A theoretical model of interviewee performance. Human Resource Management Review, 21(4), 353-367. https://doi.org/10.1016/j.hrmr.2011.05.003 DOI: https://doi.org/10.1016/j.hrmr.2011.05.003

John Bernardin, H., Thomason, S., Ronald Buckley, M., & Kane, J. S. (2016). Rater rating-level bias and accuracy in performance appraisals: The impact of rater personality, performance management competence, and rater accountability. Human Resource Management, 55(2), 321-340. https://doi.org/10.1002/hrm.21678 DOI: https://doi.org/10.1002/hrm.21678

Kahneman, D. (2011). Thinking, fast and slow. macmillan. Retrieved from https://writemac.com/wp-content/uploads/2021/07/Thinking-Fast-and-Slow.pdf

Kahneman, D., & Tversky, A. (1973). On the psychology of prediction. Psychological Review, 80(4), 237-251. https://doi.org/10.1037/h0034747 DOI: https://doi.org/10.1037/h0034747

Kang, M., & Park, M. J. (2019). Employees’ judgment and decision making in the banking industry: The perspective of heuristics and biases. International Journal of Bank Marketing, 37(1), 382-400. https://doi.org/10.1108/IJBM-04-2018-0111 DOI: https://doi.org/10.1108/IJBM-04-2018-0111

Karunarathna, M. M. C. M., Perera, H. K. D. H., Perera, M. A. R. S., Wijerathne, R. H. D., Nawagamuwa, N. M. T., & Cooray, P. J. P. (2010). Interview Mistakes Job Applicants’ Perspective. http://dr.lib.sjp.ac.lk/handle/123456789/3690

Korteling, J. E., Gerritsma, J. Y., & Toet, A. (2021). Retention and transfer of cognitive bias mitigation interventions: a systematic literature study. Frontiers in Psychology, 12, 629354. https://doi.org/10.3389/fpsyg.2021.629354 DOI: https://doi.org/10.3389/fpsyg.2021.629354

Krabuanrat, K., & Phelps, R. (1998). Heuristics and rationality in strategic decision making: An exploratory study. Journal of Business Research, 41(1), 83-93. https://doi.org/10.1016/S0148-2963(97)00014-3 DOI: https://doi.org/10.1016/S0148-2963(97)00014-3

Lance, C. E., Hoffman, B. J., Gentry, W. A., & Baranik, L. E. (2008). Rater source factors represent important subcomponents of the criterion construct space, not rater bias. Human Resource Management Review, 18(4), 223-232. https://doi.org/10.1016/j.hrmr.2008.03.002 DOI: https://doi.org/10.1016/j.hrmr.2008.03.002

Ludolph, R., & Schulz, P. J. (2018). Debiasing health-related judgments and decision making: a systematic review. Medical Decision Making, 38(1), 3-13. https://doi.org/10.1177/0272989X17716672 DOI: https://doi.org/10.1177/0272989X17716672

Marsh, B. (2002). Heuristics as social tools. New Ideas in Psychology, 20(1), 49-57. https://doi.org/10.1016/S0732-118X(01)00012-5 DOI: https://doi.org/10.1016/S0732-118X(01)00012-5

Molenaar, P. C. (2004). A manifesto on psychology as idiographic science: Bringing the person back into scientific psychology, this time forever. Measurement, 2(4), 201-218. https://doi.org/10.1207/s15366359mea0204_1 DOI: https://doi.org/10.1207/s15366359mea0204_1

Nagtegaal, R., Tummers, L., Noordegraaf, M., & Bekkers, V. (2020). Designing to debias: Measuring and reducing public managers’ anchoring bias. Public Administration Review, 80(4), 565-576. https://doi.org/10.1111/puar.13211 DOI: https://doi.org/10.1111/puar.13211

Neys, W. D. (2006). Dual processing in reasoning: Two systems but one reasoner. Psychological science, 17(5), 428-433. https://doi.org/10.1111/j.1467-9280.2006.01723.x DOI: https://doi.org/10.1111/j.1467-9280.2006.01723.x

Ohlert, C. R., & Weißenberger, B. E. (2015). Beating the base-rate fallacy: An experimental approach on the effectiveness of different information presentation formats. Journal of Management Control, 26(1), 51-80. https://doi.org/10.1007/s00187-015-0205-2 DOI: https://doi.org/10.1007/s00187-015-0205-2

Ordoyan, N. N. (2021). The Effects of Bias on Performance Appraisals in Human Resources (Doctoral dissertation, California State University, Northridge). Retrieved from https://scholarworks.calstate.edu/downloads/8g84mr963

Palmer, J. K., & Loveland, J. M. (2008). The influence of group discussion on performance judgments: Rating accuracy, contrast effects, and halo. The Journal of Psychology, 142(2), 117-130. https://doi.org/10.3200/JRLP.142.2.117-130 DOI: https://doi.org/10.3200/JRLP.142.2.117-130

Palmucci, D. N. (2023). Decision making in human resources standard practices and change management innovation initiatives: the common destiny of being affected by biases. EuroMed Journal of Business. https://doi.org/10.1108/EMJB-11-2022-0208 DOI: https://doi.org/10.1108/EMJB-11-2022-0208

Pennycook, G., Trippas, D., Handley, S. J., & Thompson, V. A. (2014). Base rates: Both neglected and intuitive. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(2), 544-554. https://doi.org/10.1037/a0034887 DOI: https://doi.org/10.1037/a0034887

Reyna, V. F., & Brainerd, C. J. (1995). Fuzzy-trace theory: An interim synthesis. Learning and individual Differences, 7(1), 1-75. https://doi.org/10.1016/1041-6080(95)90031-4 DOI: https://doi.org/10.1016/1041-6080(95)90031-4

Sartori, R., Costantini, A., & Ceschi, A. (2020). Psychological assessment in human resource management: discrepancies between theory and practice and two examples of integration. Personnel Review, 51(1), 284-298. https://doi.org/10.1108/PR-05-2019-0281 DOI: https://doi.org/10.1108/PR-05-2019-0281

Singh, H. (2013). Diagnostic errors: moving beyond ‘no respect’and getting ready for prime time. BMJ quality & safety, 22(10), 789-792. https://doi.org/10.1136/bmjqs-2013-002387 DOI: https://doi.org/10.1136/bmjqs-2013-002387

Stengård, E., Juslin, P., Hahn, U., & Van den Berg, R. (2022). On the generality and cognitive basis of base-rate neglect. Cognition, 226, 105160. https://doi.org/10.1016/j.cognition.2022.105160 DOI: https://doi.org/10.1016/j.cognition.2022.105160

Storm, K. I. L., Reiss, L. K., Günther, E., Clar-Novak, M., & Muhr, S. L. (2023). Unconscious bias in the HRM literature: Towards a critical-reflexive approach. Human Resource Management Review, 33(3), 100969. https://doi.org/10.1016/j.hrmr.2023.100969 DOI: https://doi.org/10.1016/j.hrmr.2023.100969

Swider, B. W., Harris, T. B., & Gong, Q. (2022). First impression effects in organizational psychology. Journal of Applied Psychology, 107(3), 346-369. https://doi.org/10.1037/apl0000921 DOI: https://doi.org/10.1037/apl0000921

Teovanović, P. R. (2013). Sklonost kognitivnim pristrasnostima. Универзитет у Београду. https://nardus.mpn.gov.rs/handle/123456789/3303

Tuffaha, M. (2023). The Impact of Artificial Intelligence Bias on Human Resource Management Functions: Systematic Literature Review and Future Research Directions. European Journal of Business and Innovation Research, 11(4), 35-58. https://doi.org/10.37745/ejbir.2013/vol11n43558 DOI: https://doi.org/10.37745/ejbir.2013/vol11n43558

Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases: Biases in judgments reveal some heuristics of thinking under uncertainty. science, 185(4157), 1124-1131. https://doi.org/10.1126/science.185.4157.1124 DOI: https://doi.org/10.1126/science.185.4157.1124

Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and uncertainty, 5, 297-323. https://doi.org/10.1007/BF00122574 DOI: https://doi.org/10.1007/BF00122574

Vanderpal, G., & Brazie, R. (2022). The impact of underlying stress and trauma on HRM recruitment and selection bias in employee interviews. Journal of Leadership Accountability and Ethics Vol, 19(2), 89. https://doi.org/10.33423/jlae.v19i2.5111 DOI: https://doi.org/10.33423/jlae.v19i2.5111

Vassilopoulou, J., Kyriakidou, O., Ozbilgin, M. F., & Groutsis, D. (2022). Scientism as illusio in HR algorithms: Towards a framework for algorithmic hygiene for bias proofing. Human Resource Management Journal. https://doi.org/10.1111/1748-8583.12430 DOI: https://doi.org/10.1111/1748-8583.12430

Wayne, S. J., & Kacmar, K. M. (1991). The effects of impression management on the performance appraisal process. Organizational behavior and human decision processes, 48(1), 70-88. https://doi.org/10.1016/0749-5978(91)90006-F DOI: https://doi.org/10.1016/0749-5978(91)90006-F

Whyte, G., & Sue-Chan, C. (2002). The neglect of base rate data by human resources managers in employee selection. Canadian Journal of Administrative Sciences/Revue Canadienne des Sciences de l’Administration, 19(1), 1-10. https://doi.org/10.1111/j.1936-4490.2002.tb00665.x DOI: https://doi.org/10.1111/j.1936-4490.2002.tb00665.x

Wolfe, C. R., & Fisher, C. R. (2013). Individual differences in base rate neglect: A fuzzy processing preference index. Learning and Individual Differences, 25, 1-11. https://doi.org/10.1016/j.lindif.2013.03.003 DOI: https://doi.org/10.1016/j.lindif.2013.03.003

Downloads

Published

2024-04-24

How to Cite

Kovačević, I., & Manojlović, M. (2024). Base Rate Neglect Bias: Can it be Observed in HRM Decisions and Can it be Decreased by Visually Presenting the Base Rates in HRM Decisions?. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 12(1), 119–132. https://doi.org/10.23947/2334-8496-2024-12-1-119-132

Metrics

Plaudit

Received 2023-12-06
Accepted 2024-02-01
Published 2024-04-24