Educational Application of Artificial Intelligence for Diagnosing the State of Railway Tracks

Authors

DOI:

https://doi.org/10.23947/2334-8496-2024-12-2-467-476

Keywords:

hardware, artificial intelligence, intelligent measurement system, MMC/SD cards, educational processes, sensors, security

Abstract

The aim of the work is to present an innovative solution based on artificial intelligence for examining the condition of railway tracks in real time. The system, based on fuzzy logic and metaheuristics such as Fuzzy Logic, Neural Networks and Bee Behavior Optimization, combines hardware and software to provide reliable data on the technical characteristics of the railway. Installed in rail vehicles, hardware collects this data, while software uses artificial intelligence to improve operational reliability and safety. The aforementioned technology is not only useful for infrastructure diagnostics, but also for urban railways such as trams and metros, ensuring a high level of passenger safety. The introduction of artificial intelligence in the railway sector is a key step towards modernisation, improving efficiency, resource optimization and safety. Although still in its infancy, artificial intelligence already shows great potential in transforming the railway sector towards a more efficient, reliable and sustainable future.

Downloads

Download data is not yet available.

References

Bauranov, A. (2016). The Port of Piraeus – Opportunity for Railways in South East Europe. Retrieved from https://www.globalrailwayreview.com/article/29672/port-piraeus-railways-south-east-europe/

Betke, K. (2000). The NMEA-0183 Protocol. Retrieved from https://www.tronico.fi/OH6NT/docs/NMEA0183.pdf

Bešinović, N., Tang, R., Lin, Z., Liu, R., Tang, T., Donato, L.D., Vittorini, V., Wang, Z., Flammini, F., Pappaterra, M.J., Goverde, R.M.P. (2021). Deliverable D1.2: Summary of existing relevant projects and state-of-the-art of AI application in railways. RAILS Project. https://doi.org/10.13140/RG.2.2.11353.03686

Centar za istraživanje nesreća u saobraćaju (2018). Sektor za istraživanje nesreća u železničkom saobraćaju i međunarodnu saradnju, Godišnji izveštaj za 2017. godinu, br. 340-00-4/2018-2-40-1. Retrieved from https://www.cins.gov.rs/doc/zeleznicki-saobracaj/Godisnji-Izvestaj-za-2017godinu.pdf

Compass Lexecon and Karanović & Partners (2020). Tržište prevoza robe u železničkom saobraćaju u Republici Srbiji. Izveštaj. https://www.kzk.gov.rs/kzk/wp-content/uploads/2020/08/Tr%C5%BEi%C5%A1te-prevoza-robe-u-%C5%BEelezni%C4%8Dkom-saobra%C4%87aju-u-Republici-Srbiji.pdf

Direkcija za železnice, Republika Srbija (2023). Izveštaj Direkcije za železnice o stanju bezbednosti u železničkom saobraćaju za 2022. godinu. Retrieved from https://www.raildir.gov.rs/doc/izvestaji/Godisnji_izvestaj_o_bezbednosti_za_2022_godinu.pdf

Espinosa, F., García, J.J., Hernández, A., Mazo, M., Ureña, J., Jiménez, J.A., Fernández, I., Pérez, C., García, J.C. (2018). Advanced monitoring of rail breakage in double-track railway lines by means of PCA techniques. Applied Soft Computing, 63, 1-13. https://doi.org/10.1016/j.asoc.2017.11.009

Fragnelli, V., Sanguineti S. (2014). A game theoretic model for re-optimizing a railway timetable. European Transport Research Review, 6(2), 113-125. https://doi.org/10.1007/s12544-013-0116-y

Gibert, X., Patel, V.M., Chellappa, R. (2015). Robust Fastener Detection for Autonomous Visual Railway Track Inspection. IEEE Winter Conference on Applications of Computer Vision. https://doi.org/10.1109/WACV.2015.98

Hronik, R.H. (1970). Apparatus for high-speed measurement of track geometry, patent. https://patentimages.storage.googleapis.com/ed/20/e4/3b40165f0510e3/US3517307.pdf

Hodas, S., Izvoltova, J., Chromcak, J., Bacova, D. (2022). Monitoring the Geometric Position of Transition Zones to Increase the Quality and Safety of Railway Lines, Appllied Sciences, 12, 6038. https://doi.org/10.3390/app12126038

Institut za standardizaciju Srbije (2019). SRPS EN 13848-1:2019. https://iss.rs/sr_Cyrl/project/show/iss:proj:62968

Institut za standardizaciju Srbije (2017). SRPS EN 13848-5:2017. https://iss.rs/sr_Cyrl/project/show/iss:proj:60555

International Railway Yournal (2019). The future of intelligence is artificial. https://www.railjournal.com/in_depth/future-intelligence-artificial/

Ministarstvo građevinarstva, saobraćaja i infrastructure. Retrieved from https://www.mgsi.gov.rs/cir/projekti/term/195

Railway Gazette International. https://www.railwaygazette.com/

Saleh, S. (2016). Spherebot Design and testing of a robot inside of a sphere. Examensarbete inom teknik. https://kth.diva-portal.org/smash/get/diva2:957832/FULLTEXT01.pdf

Shafieenejad, I., Rouzi, E.D., Sardari, J., Araghi, M.S., Esmaeili, A., Zahedi, S. (2021). Fuzzy logic, neural-fuzzy network and honey bees algorithm to develop the swarm motion of aerial robots. Evolving Systems, 13, 319-330, https://doi.org/10.1007/s12530-021-09391-4

Sreenivvas, U., Drakshayani, E., Basha, D., Vardhan, M.H., Jhansi, Y.S., Naik, P.B. (2023). Multi-functional blind stick by using solar charging system. International Research Journal of Engineering and Technology, 10 (3), 1282-1287, Retrieved from https://www.irjet.net/archives/V10/i3/IRJET-V10I3205.pdf

Tararychkin, I.A. (2020). Selection of network structures of pipeline systems resilient to mixed damage. Dependability, 20(2), 12-17. https://doi.org/10.21683/1729-2646-2020-20-2-12-17

Tang, R., Donato, L.D., Bešinović, N., Flammini, F., Goverde, R.M.P., Lin. Z., Liu, R., Tang, T., Vittorini, V., Wang, Z. (2022). A literature review of Artificial Intelligence applications in railway systems. Transportation Research Part C 140, 103679, https://doi.org/10.1016/j.trc.2022.103679

Uputstvo o postupku verifikacije proizvoda i proveri podobnosti proizvođača kočne opreme (“Sl. glasnik Zajednice JŽ”, br. 6/01). https://www.srbcargo.rs/sr/biblioteka-propisa/?script=lat

Yaman, O., Karakose, M., Akin, E. (2017). A Vision Based Diagnosis Approach for Multi Rail Surface Faults Using Fuzzy Classificiation in Railways. International Conference on Computer Science and Engineering. https://doi.org/10.1109/UBMK.2017.8093511

Yazawa, E. (2003). Track inspection technologies, Railway Technology Avalanche, 1(1), 3. https://www.rtri.or.jp/eng/publish/newsletter/pdf/01/RTA-01.pdf

Zohari, M.H.B., Nazri M.F.B.M. (2021). GPS Based Vehicle Tracking System. International Journal of Scientific & Technology Research, 10(04), 278-282. https://www.researchgate.net/publication/352559892_GPS_Based_Vehicle_Tracking_System

Downloads

Published

2024-08-31

How to Cite

Dubljanin, D., Marković, F., Dimić, G., Vučković, D., Petković, M., & Mosurović, L. (2024). Educational Application of Artificial Intelligence for Diagnosing the State of Railway Tracks. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 12(2), 467–476. https://doi.org/10.23947/2334-8496-2024-12-2-467-476

Metrics

Plaudit

Received 2024-07-16
Accepted 2024-08-10
Published 2024-08-31