The Way of Learning Preserved in The Structure of Individual Experience Shapes Task-Switching: Implications for Neuroscience and Education

Authors

  • Alexey A. Sozinov Institute of Psychology RAS, Moscow, Russian Federation; State Academic University for the Humanities, Moscow, Russian Federation https://orcid.org/0000-0002-0594-2844
  • Anastasiia V. Bakhchinaa State Academic University for the Humanities, Moscow, Russian Federation https://orcid.org/0000-0002-0598-1165
  • Yuri I. Alexandrov Institute of Psychology RAS, Moscow, Russian Federation; Moscow State University of Psychology & Education, Moscow, Russian Federation; HSE University, Moscow, Russian Federation https://orcid.org/0000-0002-2644-3016

DOI:

https://doi.org/10.23947/2334-8496-2021-9-2-291-299

Keywords:

task switching, history of learning, single-neuron activity, memory reorganization, systems

Abstract

Task switching is a behavioral phenomenon that serves as a tool for assessment of individual cognitive abilities that becomes especially essential in our multitasking milieu. Factors of task-switching include cognitive load and cognitive effort, mostly derived from task difficulty, as well as age and practice. The analysis of brain activity on the level of single neurons shows that the activations that contribute to task performance and switching differ with respect to the protocol of learning the alternated tasks. We argue that task switching is affected by the history of learning and in turn it changes the structure of individual experience. On this basis we outline perspectives of task switching studies in the fundamental field of long-term memory and applied field of education and therapy.

Downloads

Download data is not yet available.

References

Aleksandrov, Y. I., Grinchenko, Y. V., Shevchenko, D. G., Mats, V. N., Laukka, S., & Averkin, R. G. (2005). Neuron activity in the anterolateral motor cortex in operant food-acquiring and alcohol-acquiring behavior. Neuroscience and Behavioral Physiology, 35(5), 501–509. https://doi.org/10.1007/s11055-005-0085-2

Alexandrov, Y. I. (2008). How we fragment the world: the view from inside versus the view from outside. Social Science Information, 47(3), 419–457. https://doi.org/10.1177/0539018408092580

Alexandrov, Y. I. (2015). Systemic psychophysiology. In C. Forsythe et al. (Eds.), Russian Cognitive Neuroscience: Historical and Cultural Context (pp. 65–100). CreateSpace Independent Publishing.

Alexandrov, Y. I., Grechenko, T. N., Gavrilov, V. V., Gorkin, A. G., Shevchenko, D. G., Grinchenko, Y. V., Aleksandrov, I. O., Maksimova, N. E., Bezdenezhnych, B. N., & Bodunov, M. V. (1997). Formation and realization of individual experience. Neuroscience and Behavioral Physiology, 27(4), 441–454. https://doi.org/10.1007/BF02462946

Alexandrov, Y. I., Grinchenko, Y. V., Shevchenko, D. G., Averkin, R. G., Matz, V. N., Laukka, S., & Sams, M. (2013). The Effect of Ethanol on the Neuronal Subserving of Behavior in the Hippocampus. Journal of Behavioral and Brain Science, 03(01), 107–130. https://doi.org/10.4236/jbbs.2013.31011

Alexandrov, Y. I., Grinchenko, Y. V, Laukka, S. J., Järvilehto, T., Matz, V. N., & Svetlajev, I. A. (1990). Acute effect of ethanol on the pattern of behavioural specialization of neurons in the limbic cortex of the freely moving rabbit. Acta Physiologica Scandinavica, 140(2), 257–268. https://doi.org/10.1111/j.1748-1716.1990.tb08997.x

Alexandrov, Y. I., Grinchenko, Y. V., Shevchenko, D. G., Averkin, R. G., Matz, V. N., Laukka, S., & Korpusova, A. V. (2001). A subset of cingulate cortical neurones is specifically activated during alcohol-acquisition behaviour. Acta Physiologica Scandinavica, 171(1), 87–97. https://doi.org/10.1046/j.1365-201X.2001.00787.x

Alexandrov, Y. I., Krylov, A. K., & Arutyunova, K. R. (2017). Activity during learning and the nonlinear differentiation of experience. Nonlinear Dynamics, Psychology, and Life Sciences, 21(4), 391–405. Retrieved from https://lib.ipran.ru/upload/papers/paper_31056164.pdf

Alexandrov, Y. I., & Sams, M. E. (2005). Emotion and consciousness: Ends of a continuum. Cognitive Brain Research, 25(2), 387–405. https://doi.org/10.1016/j.cogbrainres.2005.08.006

Alexandrov, Y. I., Shevchenko, D. G., Gorkin, A. G., & Grinchenko, Y. V. (1999). Dinamics of systems organization of behavior during consecutive trials [Dinamika sistemnoj organizacii povedenija v ego posledovatel’nyh realizacijah]. Psikhologicheskii Zhurnal, 20(2), 82–89.

Alexandrov, Y. I., Sozinov, A. A., Svarnik, O. E., Gorkin, A. G., Kuzina, E. A., & Gavrilov, V. V. (2018). Neuronal bases of systemic organization of behavior. In Advances in Neurobiology (Vol. 21, pp. 1–33). Springer New York LLC. https://doi.org/10.1007/978-3-319-94593-4_1

Anokhin, P. K. (1974). Biology and Neurophysiology of the Conditioned Reflex and Its Role in Adaptive Behavior. Pergamon Press.

Arrington, C. M., Altmann, E. M., & Carr, T. H. (2003). Tasks of a feather flock together: Similarity effects in task switching. Memory and Cognition, 31(5), 781–789. https://doi.org/10.3758/BF03196116

Barcelo, F., Escera, C., Corral, M. J., & Periáñez, J. A. (2006). Task switching and novelty processing activate a common neural network for cognitive control. Journal of Cognitive Neuroscience, 18(10), 1734–1748. https://doi.org/10.1162/jocn.2006.18.10.1734

Brault Foisy, L. M., Matejko, A. A., Ansari, D., & Masson, S. (2020). Teachers as orchestrators of neuronal plasticity: Effects of teaching practices on the brain. Mind, Brain, and Education, 14(4), 415–428. https://doi.org/10.1111/mbe.12257

Bryden, D. W., Brockett, A. T., Blume, E., Heatley, K., Zhao, A., & Roesch, M. R. (2019). Single neurons in anterior cingulate cortex signal the need to change action during performance of a stop-change task that induces response competition. Cerebral Cortex, 29(3), 1020–1031. https://doi.org/10.1093/cercor/bhy008

Buttelmann, F., & Karbach, J. (2017). Development and plasticity of cognitive flexibility in early and middle childhood. Frontiers in psychology, 8, 1040. https://doi.org/10.3389/fpsyg.2017.01040

Calcott, R. D., & Berkman, E. T. (2015). Neural Correlates of Attentional Flexibility during Approach and Avoidance Motivation. PLOS ONE, 10(5), e0127203. https://doi.org/10.1371/journal.pone.0127203

Carrier, L. M., Rosen, L. D., Cheever, N. A., & Lim, A. F. (2015). Causes, effects, and practicalities of everyday multitasking. Developmental Review, 35, 64–78. https://doi.org/10.1016/j.dr.2014.12.005

Chiu, Y. C., & Egner, T. (2017). Cueing cognitive flexibility: Item-specific learning of switch readiness. Journal of Experimental Psychology: Human Perception and Performance, 43(12), 1950–1960. https://doi.org/10.1037/xhp0000420

Clopath, C., Bonhoeffer, T., Hübener, M., & Rose, T. (2017). Variance and invariance of neuronal long-term representations. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1715), 20160161. https://doi.org/10.1098/rstb.2016.0161

Dajani, D. R., & Uddin, L. Q. (2015). Demystifying cognitive flexibility: Implications for clinical and developmental neuroscience. Trends in Neurosciences, 38(9), 571–578. https://doi.org/10.1016/j.tins.2015.07.003

Davis, P., Zaki, Y., Maguire, J., & Reijmers, L. G. (2017). Cellular and oscillatory substrates of fear extinction learning. Nature Neuroscience, 20(11), 1624–1633. https://doi.org/10.1038/nn.4651

De Baene, W., Duyck, W., Brass, M., & Carreiras, M. (2015). Brain circuit for cognitive control is shared by task and language switching. Journal of Cognitive Neuroscience, 27(9), 1752–1765. https://doi.org/10.1162/jocn_a_00817

Dindar, M., & Akbulut, Y. (2016). Effects of multitasking on retention and topic interest. Learning and Instruction, 41, 94–105. https://doi.org/10.1016/j.learninstruc.2015.10.005

Dreher, J. C., & Grafman, J. (2003). Dissociating the roles of the rostral anterior cingulate and the lateral prefrontal cortices in performing two tasks simultaneously or successively. Cerebral Cortex, 13(4), 329–339. https://doi.org/10.1093/cercor/13.4.329

Dreher, J. C., Koechlin, E., Ali, S. O., & Grafman, J. (2002). The roles of timing and task order during task switching. NeuroImage, 17(1), 95–109. https://doi.org/10.1006/nimg.2002.1169

Drexler, S. M., & Wolf, O. T. (2018). Behavioral disruption of memory reconsolidation: From bench to bedside and back again. Behavioral Neuroscience, 132(1), 13–22. https://doi.org/10.1037/bne0000231

Dudai, Y., Karni, A., & Born, J. (2015). The Consolidation and Transformation of Memory. Neuron 88(1), 20–32. Cell Press. https://doi.org/10.1016/j.neuron.2015.09.004

Frankland, P. W., Bontempi, B., Talton, L. E., Kaczmarek, L., & Silva, A. J. (2004). The Involvement of the Anterior Cingulate Cortex in Remote Contextual Fear Memory. Science, 304(5672), 881–883. https://doi.org/10.1126/science.1094804

Gabriel, M. (1993). Discriminative Avoidance Learning: A Model System. In Neurobiology of Cingulate Cortex and Limbic Thalamus (pp. 478–523). Birkhäuser Boston. https://doi.org/10.1007/978-1-4899-6704-6_18

Gorkin, A. G., Kuzina, E. A., Ivlieva, N. P., Solov’eva, O. A., & Aleksandrov, Y. I. (2018). Activity Patterns in Neurons in the Retrosplenial Area of the Cortex in Operant Food-Procuring Behavior in Rats of Different Ages. Neuroscience and Behavioral Physiology, 48(8), 1014–1018. https://doi.org/10.1007/s11055-018-0663-8

Gorkin, A. G., & Shevchenko, D. G. (1991). Stability of the behavioral specialization of neurons. Neuroscience and Behavioral Physiology, 21(3), 222–229. https://doi.org/10.1007/BF01191659

Gorkin, A. G., & Shevchenko, D. G. (1996). Distinctions in the neuronal activity of the rabbit limbic cortex under different training strategies. Neuroscience and Behavioral Physiology, 26(2), 103–112. https://doi.org/10.1007/BF02359413

Gullifer, J. W., & Titone, D. (2019). The Impact of a Momentary Language Switch on Bilingual Reading: Intense at the Switch but Merciful Downstream for L2 but Not L1 Readers. Journal of Experimental Psychology: Learning Memory and Cognition, 45(11), 2036–2050. https://doi.org/10.1037/xlm0000695

Hassed, C. (2016). Mindful learning: Why attention matters in education. International Journal of School and Educational Psychology, 4(1), 52–60. https://doi.org/10.1080/21683603.2016.1130564

Hirsch, P., Nolden, S., Philipp, A. M., & Koch, I. (2018). Hierarchical task organization in dual tasks: evidence for higher level task representations. Psychological Research, 82(4), 759–770. https://doi.org/10.1007/s00426-017-0851-0

Hyman, J. M., Holroyd, C. B., & Seamans, J. K. (2017). A Novel Neural Prediction Error Found in Anterior Cingulate Cortex Ensembles. Neuron, 95(2), 447-456.e3. https://doi.org/10.1016/j.neuron.2017.06.021

Johnston, K., Levin, H. M., Koval, M. J., & Everling, S. (2007). Top-Down Control-Signal Dynamics in Anterior Cingulate and Prefrontal Cortex Neurons following Task Switching. Neuron, 53(3), 453–462. https://doi.org/10.1016/j.neuron.2006.12.023

Jones, W. E., & Moss, J. (2019). Assessing the transfer of interruption resumption skill to novel tasks. Journal of Experimental Psychology: Applied, 25(2), 230–244. https://doi.org/10.1037/xap0000193

Kazymaev, S. A., Sozinov, A. A., Grinchenko, Y. V., & Alexandrov, Y. I. (2012). The reorganization of individual experience assessed via indices of brain activity dynamics. In V. A. Barabanschikov (Ed.), Experimental method in the structure of psychological knowledge (pp. 777–781). Institut psihologii RAN.

Koch, I., Poljac, E., Müller, H., & Kiesel, A. (2018). Cognitive structure, flexibility, and plasticity in human multitasking-an integrative review of dual-task and task-switching research. Psychological Bulletin, 144(6), 557–583. https://doi.org/10.1037/bul0000144

Kozlovsky, S. A., Velichkovsky, B. B., Vartanov, A. V., Nikonova, E. Y., & Velichkovsky, B. M. (2012). The role of the domains of the anterior cingulate cortex in the functioning of human memory. Experimental Psychology (Russia), 5(1), 12–22.

Kuwabara, M., Mansouri, F. A., Buckley, M. J., & Tanaka, K. (2014). Cognitive control functions of anterior cingulate cortex in macaque monkeys performing a wisconsin card sorting test analog. Journal of Neuroscience, 34(22), 7531–7547. https://doi.org/10.1523/JNEUROSCI.3405-13.2014

Kuzina, E. A., & Aleksandrov, Y. I. (2020). Characteristics of the Neuronal Support for Operative Behavior Formed by Mono- and Multistep Methods. Neuroscience and Behavioral Physiology, 50(6), 710–722. https://doi.org/10.1007/s11055-020-00959-2

Lien, M. C., Ruthruff, E., & Kuhns, D. (2006). On the difficulty of task switching: Assessing the role of task-set inhibition. Psychonomic Bulletin and Review, 13(3), 530–535. https://doi.org/10.3758/BF03193881

Ma, L., Chan, J. L., Johnston, K., Lomber, S. G., & Everling, S. (2019). Macaque anterior cingulate cortex deactivation impairs performance and alters lateral prefrontal oscillatory activities in a rule-switching task. PLoS Biology, 17(7), e3000045. https://doi.org/10.1371/journal.pbio.3000045

Markina, P. N., & Vladimirov, I. Y. (2019). Executive function role on a stage of impasse in insight problem solving. Psychology. Journal of the Higher School of Economics, 16(3), 562–570. https://doi.org/10.17323/1813-8918-2019-3-562-570

Marton, F. (2006). Sameness and difference in transfer. Journal of the Learning Sciences, 15(4), 499–535. https://doi.org/10.1207/s15327809jls1504_3

McMahon, D. B. T., Jones, A. P., Bondar, I. V., & Leopold, D. A. (2014). Face-selective neurons maintain consistent visual responses across months. Proceedings of the National Academy of Sciences of the United States of America, 111(22), 8251–8256. https://doi.org/10.1073/pnas.1318331111

Mercado, E. (2008). Neural and Cognitive Plasticity: From Maps to Minds. Psychological Bulletin, 134(1), 109–137. https://doi.org/10.1037/0033-2909.134.1.109

Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant visual representation by single neurons in the human brain. Nature, 435(7045), 1102–1107. https://doi.org/10.1038/nature03687

Rey, H. G., Gori, B., Chaure, F. J., Collavini, S., Blenkmann, A. O., Seoane, P., Seoane, E., Kochen, S., & Quian Quiroga, R. (2020). Single Neuron Coding of Identity in the Human Hippocampal Formation. Current Biology, 30(6), 1152-1159.e3. https://doi.org/10.1016/j.cub.2020.01.035

Rohrer, D., & Taylor, K. (2007). The shuffling of mathematics problems improves learning. Instructional Science, 35(6), 481–498. https://doi.org/10.1007/s11251-007-9015-8

Rubinstein, J. S., Meyer, D. E., & Evans, J. E. (2001). Executive Control of Cognitive Processes in Task Switching. Journal of Experimental Psychology: Human Perception and Performance, 27(4), 763–797. https://doi.org/10.1037/0096-1523.27.4.763

Shvyrkov, V. B. (1986). Behavioral specialization of neurons and the system-selection hypothesis of learning. In F. Klix & H. Hagendorf (Eds.), Human memory and cognitive capabilities (pp. 599–611). North-Holland: Elsevier.

Shvyrkov, V. B. (1990). Neurophysiological Study of Animals’ Subjective Experience. In Machinery of the Mind (pp. 337–350). Birkhäuser Boston. https://doi.org/10.1007/978-1-4757-1083-0_17

Son, L. K., & Simon, D. A. (2012). Distributed Learning: Data, Metacognition, and Educational Implications. In Educational Psychology Review (Vol. 24, Issue 3, pp. 379–399). Springer. https://doi.org/10.1007/s10648-012-9206-y

Sozinov, A. A., Averkin, R. G., Grinchenko, Y. V., & Alexandrov, Y. I. (2008). Involvement of previous memory in learning and the transfer effect. International Journal of Psychophysiology, 69(3), 258. https://doi.org/10.1016/j.ijpsycho.2008.05.179

Sozinov, A. A., Grinchenko, Y. V., Bakhchina, A. V., Zubtsova, M., & Alexandrov, Y. I. (2021). Subserving of task switching in rabbits’ cingulate cortex neurons. In Boris M. Velichkovsky, P. M. Balaban, & V. L. Ushakov (Eds.), Advances in Intelligent Systems and Computing (V.1358, pp. 439–451). Springer. https://doi.org/10.1007/978-3-030-71637-0_50

Srna, S., Schrift, R. Y., & Zauberman, G. (2018). The Illusion of Multitasking and Its Positive Effect on Performance. Psychological Science, 29(12), 1942–1955. https://doi.org/10.1177/0956797618801013

Stavtseva, I. V. (2014). The principle of multitasking management in students’ learning to read. In S. D. Vaulin (Ed.), The science in SUSU: proceedings of the 66-th conference (pp. 1317–1321). Izdatelski tsentr YuUGRU.

Strobach, T., Liepelt, R., Schubert, T., & Kiesel, A. (2012). Task switching: Effects of practice on switch and mixing costs. Psychological Research, 76(1), 74–83. https://doi.org/10.1007/s00426-011-0323-x

Svarnik, O. E., Bulava, A. I., Gladilin, D. L., Nazhestkin, I. A., & Kuzina, E. A. (2020). Actualization of Existing Experience and Features of Subsequent Learning. Experimental Psychology (Russia), 13(3), 118–131. https://doi.org/10.17759/exppsy.2020130309

Thompson, L. T., & Best, P. J. (1990). Long-term stability of the place-field activity of single units recorded from the dorsal hippocampus of freely behaving rats. Brain Research, 509(2), 299–308. https://doi.org/10.1016/0006-8993(90)90555-P

Timofeeva, N. O., Ivlieva, N. Y., Semikopnaya, I. I., & Naryshkin, A. V. (1997). Interactions between homogeneous conditioned motor reflexes during conditioned reflex switching: Transfer of learning and interference. Neuroscience and Behavioral Physiology, 27(1), 30–37. https://doi.org/10.1007/BF02463043

Tonegawa, S., Morrissey, M. D., & Kitamura, T. (2018). The role of engram cells in the systems consolidation of memory. In Nature Reviews Neuroscience 19(8), 485–498. Nature Publishing Group. https://doi.org/10.1038/s41583-018-0031-2

Umemoto, A., & Holroyd, C. B. (2016). Exploring individual differences in task switching: Persistence and other personality traits related to anterior cingulate cortex function. In Progress in Brain Research, 229, 189–212. Elsevier B.V. https://doi.org/10.1016/bs.pbr.2016.06.003

Velichkovsky, B. B., & Ziberova, A. (2021). Foreign language proficiency, typological similarity to L1, and cognitive control. In B. M. Velichkovsky, P. M. Balaban, & V. L. Ushakov (Eds.), Advances in Intelligent Systems and Computing, 1358, 335–344. Springer. https://doi.org/10.1007/978-3-030-71637-0_39

Vermeylen, L., Braem, S., & Notebaert, W. (2019). The affective twitches of task switches: Task switch cues are evaluated as negative. Cognition, 183, 124–130. https://doi.org/10.1016/j.cognition.2018.11.002

Wasylyshyn, C., Verhaeghen, P., & Sliwinski, M. J. (2011). Aging and Task Switching: A Meta-Analysis. Psychology and Aging, 26(1), 15–20. https://doi.org/10.1037/a0020912

Weible, A. P. (2013). Remembering to attend: The anterior cingulate cortex and remote memory. Behavioural Brain Research, 245, 63–75. https://doi.org/10.1016/j.bbr.2013.02.010

Weible, A. P., Rowland, D. C., Pang, R., & Kentros, C. (2009). Neural Correlates of Novel Object and Novel Location Recognition Behavior in the Mouse Anterior Cingulate Cortex. Journal of Neurophysiology, 102(4), 2055–2068. https://doi.org/10.1152/jn.00214.2009

Wylie, G., & Allport, A. (2000). Task switching and the measurement of “switch costs.” Psychological Research, 63(3–4), 212–233. https://doi.org/10.1007/s004269900003

Yeung, N., & Monsell, S. (2003). Switching Between Tasks of Unequal Familiarity: The Role of Stimulus-Attribute and Response-Set Selection. Journal of Experimental Psychology: Human Perception and Performance, 29(2), 455–469. https://doi.org/10.1037/0096-1523.29.2.455

Zdanevych, L. V., Buchkivska, G. V., Greskova, V. V., Аndriievskyi, B. M., & Perminova, L. A. (2020). Creativity Formation in the Context of Social and Psychological Adaptation of Preschoolers Aged 5-6 Years. International Journal of Cognitive Research in Science, Engineering and Education, 8(Special issue), 79–91. https://doi.org/10.23947/2334-8496-2020-8-SI-79-91

Zhang, W. H., & Williams, Z. M. (2015). Frontal neurons modulate memory retrieval across widely varying temporal scales. Learning and Memory, 22(6), 299–306. https://doi.org/10.1101/lm.036806.114

Zhao, X., Wang, H., & Maes, J. H. R. (2020). Training and transfer effects of extensive task-switching training in students. Psychological Research, 84(2), 389–403. https://doi.org/10.1007/s00426-018-1059-7

Published

2021-08-31

How to Cite

Sozinov, A. A., Bakhchinaa, A. V., & Alexandrov, Y. I. (2021). The Way of Learning Preserved in The Structure of Individual Experience Shapes Task-Switching: Implications for Neuroscience and Education. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 9(2), 291–299. https://doi.org/10.23947/2334-8496-2021-9-2-291-299