A Web Application for Learning Support Vector Machine Algorithms in Computer Engineering

Authors

DOI:

https://doi.org/10.23947/2334-8496-2025-13-1-175-190

Keywords:

Support Vector Machine, educational technology, algorithm visualization, simulation systems, educational tools

Abstract

In this paper, we present a web application designed for learning and visualizing Support Vector Machine (SVM) algorithms, which are key components in the fields of machine learning and data processing. The application was developed as an interactive tool that allows students and researchers to experiment with SVM models, providing insight into their structure and functionality. By using modern web technologies, the application offers a user environment that is accessible, intuitive, and adaptable for learning and research. In addition to implementing a web tool for learning the SVM algorithm, this study proposes a method for its application in teaching and analyzes the impact of applying the new interactive method on final learning outcomes. To assess the effectiveness of this tool, an experiment was conducted consisting of three phases: pre-testing, training, and post-testing. To evaluate students’ experiences with the applied alternative learning method using the auxiliary tool and their perception of the software system’s effectiveness, the standardized System Usability Scale (SUS) was used.

Downloads

Download data is not yet available.

References

Abadi, M., Agarwal, A., Barham, P. et al. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. https://doi.org/10.48550/arXiv.1603.04467

Bangor, A., Kortum, P.T. and Miller, J.T., (2008). An empirical evaluation of the system usability scale. Intl. Journal of Human–Computer Interaction, 24(6), 574-594. https://doi.org/10.1080/10447310802205776 DOI: https://doi.org/10.1080/10447310802205776

Bennett, K.P. and Campbell, C., (2000). Support vector machines: hype or hallelujah?. ACM SIGKDD explorations newsletter, 2(2), 1-13. https://doi.org/10.1145/380995.380999 DOI: https://doi.org/10.1145/380995.380999

Brooke, J. (1996). SUS: A “quick and dirty” usability scale. In P. W. Jordan, B. Thomas, B. A. Weerdmeester, & I. L. McClelland (Eds.), Usability evaluation in industry, 189–194. London: Taylor & Francis.

Çağlayan, C., (2019). Comparison of the Code-based or Tool-based Teaching of the Machine Learning Algorithm for the First-Time Learners. In 2019 1st International Informatics and Software Engineering Conference (UBMYK), 1-3. IEEE. https://doi.org/10.1109/UBMYK48245.2019.8965519 DOI: https://doi.org/10.1109/UBMYK48245.2019.8965519

Chang, C. C., & Lin, C. J. (2011). LIBSVM: a library for support vector machines. ACM transactions on intelligent systems and technology (TIST), 2(3), 1-27. https://doi.org/10.1145/1961189.1961199 DOI: https://doi.org/10.1145/1961189.1961199

Chatzimparmpas, A., Martins, R. M., Jusufi, I., & Kerren, A. (2020). A survey of surveys on the use of visualization for interpreting machine learning models. Information Visualization, 19(3), 207-233. https://doi.org/10.1177/1473871620904671 DOI: https://doi.org/10.1177/1473871620904671

Chollet F., et al. (2015). Keras. https://keras.io

Cortes, C. and Vapnik, V., (1995). Support-vector networks. Machine learning, 20, 273-297. https://doi.org/10.1007/BF00994018 DOI: https://doi.org/10.1007/BF00994018

DÍaz, J.M., Dormido, S. and Rivera, D.E., (2015). Interactive Education for Time-Domain Time Series Analysis using ITTSAE. IFAC-PapersOnLine, 48(28), 751-756. https://doi.org/10.1016/j.ifacol.2015.12.220 DOI: https://doi.org/10.1016/j.ifacol.2015.12.220

Djordjevic, J., Nikolic, B. and Milenkovic, A., (2005). FlexibleWeb-Based Educational System for Teaching Computer Architecture and Organization. IEEE Transactions on Education, 48(2), 264-273. https://doi.org/10.1109/TE.2004.842918 DOI: https://doi.org/10.1109/TE.2004.842918

Dugard, P. and Todman, J., (1995). Analysis of pre‐test‐post‐test control group designs in educational research. Educational Psychology, 15(2), 181-198. https://doi.org/10.1080/0144341950150207 DOI: https://doi.org/10.1080/0144341950150207

Guo, P., Saab, N., Post, L.S. and Admiraal, W., 2020. A review of project-based learning in higher education: Student outcomes and measures. International journal of educational research, 102, 101586. https://doi.org/10.1016/j.ijer.2020.101586 DOI: https://doi.org/10.1016/j.ijer.2020.101586

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: an update. ACM SIGKDD explorations newsletter, 11(1), 10-18. https://doi.org/10.1145/1656274.1656278 DOI: https://doi.org/10.1145/1656274.1656278

Hazzan, O., and Mike, K. (2023). Guide to Teaching Data Science: An Interdisciplinary Approach. Springer Nature. DOI: https://doi.org/10.1007/978-3-031-24758-3

Jeong, D. H., Ziemkiewicz, C., Fisher, B., Ribarsky, W., & Chang, R. (2009). iPCA: An interactive system for pca‐based visual analytics. In Computer Graphics Forum (Vol. 28, No. 3, pp. 767-774). Oxford, UK: Blackwell Publishing Ltd. https://doi.org/10.1111/j.1467-8659.2009.01475.x DOI: https://doi.org/10.1111/j.1467-8659.2009.01475.x

Jovanović, N., Popović, R., Marković, S. and Jovanovic, Z., (2012). Web laboratory for computer network. Computer Applications in Engineering Education, 20(3), 493-502. https://doi.org/10.1002/cae.20417 DOI: https://doi.org/10.1002/cae.20417

Jovanović, N., Stamenković, S., and Jovanović, S. (2023). NNeduca: a software environment to teach artificial neural networks, Comput. Appl. Eng. Educ. Volume 31, Issue 5, 1447–1464. https://doi.org/10.1002/cae.22655 DOI: https://doi.org/10.1002/cae.22655

Kim, J. T., Kim, S., & Petersen, B. K. (2021). An interactive visualization platform for deep symbolic regression. In Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, 5261-5263. https://doi.org/10.24963/ijcai.2020/763 DOI: https://doi.org/10.24963/ijcai.2020/763

Mayfield, E., & Rosé, C. (2010). An interactive tool for supporting error analysis for text mining. In Proceedings of the NAACL HLT 2010 Demonstration Session, 25-28.

Mühlbacher, T., Piringer, H., Gratzl, S., Sedlmair, M. and Streit, M. (2014). Opening the black box: Strategies for increased user involvement in existing algorithm implementations. IEEE transactions on visualization and computer graphics, 20(12), 1643-1652. https://doi.org/10.1109/TVCG.2014.2346578 DOI: https://doi.org/10.1109/TVCG.2014.2346578

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L. and Desmaison, A., (2019). Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems, 32. https://doi.org/10.48550/arXiv.1912.01703

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V. and Vanderplas, J., (2011). Scikit-learn: Machine learning in Python. The Journal of machine Learning research, 12, 2825-2830. https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?source=post_page

Pradono, S., Astriani, M.S. and Moniaga, J., (2013). A method for interactive learning. International Journal of Communication & Information Technology, 7(2), 46-48. https://doi.org/10.21512/commit.v7i2.583 DOI: https://doi.org/10.21512/commit.v7i2.583

Rutten, N., Van Joolingen, W. R., and Van der Veen, J. T., (2012). The learning effects of computer simulations in science education. Computers & Education, Elsevier, 58(2012), 136-153. https://doi.org/10.1016/j.compedu.2011.07.017 DOI: https://doi.org/10.1016/j.compedu.2011.07.017

Sacha, D., Sedlmair, M., Zhang, L., Lee, J.A., Peltonen, J., Weiskopf, D., North, S.C. and Keim, D.A. (2017). What you see is what you can change: Human-centered machine learning by interactive visualization. Neurocomputing, 268, 164-175. https://doi.org/10.1016/j.neucom.2017.01.105 DOI: https://doi.org/10.1016/j.neucom.2017.01.105

Schölkopf, B. and Smola, A.J., (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press. DOI: https://doi.org/10.7551/mitpress/4175.001.0001

Silva, W., Steinmacher, I. and Conte, T. (2019). Students’ and instructors’ perceptions of five different active learning strategies used to teach software modeling. IEEE Access, 7, 184063-184077. https://doi.org/10.1109/ACCESS.2019.2929507 DOI: https://doi.org/10.1109/ACCESS.2019.2929507

Sonnenburg, S., Rätsch, G., Henschel, S., Widmer, C., Behr, J., Zien, A., Bona, F.D., Binder, A., Gehl, C. and Franc, V., (2010). The SHOGUN machine learning toolbox. The Journal of Machine Learning Research, 11, 1799-1802. https://doi.org/10.5446/19980

Stamenković, S., Jovanović, N. (2024). A Web-based Educational System for Teaching Compilers, IEEE Transactions on Learning Technologies. Vol. 17, 143-156. https://doi.org/10.1109/TLT.2023.3297626 DOI: https://doi.org/10.1109/TLT.2023.3297626

Stamenković, S., Jovanović, N., Vasović, B., Cvjetković, M. and Jovanović, Z., (2023). Software tools for learning artificial intelligence algorithms. Artificial Intelligence Review, 1-30. https://doi.org/10.1007/s10462-023-10436-0 DOI: https://doi.org/10.1007/s10462-023-10436-0

Taher, M., and Khan, A., (2014). Impact of Simulation-based and Hands-on Teaching Methodologies on Students’ Learning in an Engineering Technology Program. Proceedings of the ASEE Annual Conference & Exposition, 1-22. https://doi.org/10.18260/1-2--20593 DOI: https://doi.org/10.18260/1-2--20593

Thakur, J., and Kumar, N. (2011). DES, AES and Blowfish: Symmetric key cryptography algorithms simulation based performance analysis. International journal of emerging technology and advanced engineering, 1(2), 6-12.

Vehovar, V., Toepoel, V. and Steinmetz, S., (2016). Non-probability sampling. The Sage handbook of survey methods. https://doi.org/10.4135/9781473957893.n22 DOI: https://doi.org/10.4135/9781473957893.n22

Zeiler, M.D. and Fergus, R. (2014). Visualizing and understanding convolutional networks. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13, 818-833. Springer International Publishing. https://doi.org/10.48550/arXiv.1311.2901 DOI: https://doi.org/10.1007/978-3-319-10590-1_53

Downloads

Published

2025-04-29

How to Cite

Jovanović, N., Jovanović, S., Stamenković, S., Marinković, D., & Stamenković, N. (2025). A Web Application for Learning Support Vector Machine Algorithms in Computer Engineering. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 13(1), 175–190. https://doi.org/10.23947/2334-8496-2025-13-1-175-190

Metrics

Plaudit

Received 2024-12-10
Accepted 2025-04-11
Published 2025-04-29