emotional intelligence, neural correlates, EEG, behavior genetics, brain, neurotransmitters


The article is an overview of modern studies of brain organization and genetic correlates of emotional intelligence. Emotional intelligence is becoming the subject of more and more attentive study of psychologists due to the fact that it influences the mental development of humans, plays an important role in many professions, and its impairment is a marker of some disorders. Nevertheless, the brain organization and genetic correlates of emotional intelligence have not been studied enough – first studies appeared only in the early 2000s. A review of the literature on the enceph-alographic showed that in rest, people with higher emotional intelligence show greater excitation of the left anterior regions of the brain. When per-ceiving affective stimuli, participants with high emotional intelligence show stronger synchronization of some EEG rhythms. Brain mapping technique made it possible to identify the areas of the brain involved in activities related to emotional intelligence. In regard to genetic correlates of emotional intelligence, some genes of neurotransmitter systems have been associated to this trait: the catechol-O-methyltransferase gene COMT, the dopamine DRD2 receptor gene, the serotonin receptor gene HTR2A, and the BDNF brain neurotrophic factor gene.


Download data is not yet available.


Alfimova M. V. (2016). Emotion recognition: Genes and experience. Priroda, 3, 11-16.

Alfimova, M. V., Golimbet, V. E., Korovaitseva, G. I., Lezheiko, T. V., Tikhonov, D. V., Ganisheva, T. K., ... & Shemiakina, T. K. (2017). A role of interactions between N-methyl-D-aspartate and dopamine receptors in facial emotion recognition impairment in schizophrenia. Zhurnal nevrologii i psikhiatrii imeni SS Korsakova, 117(6), 47-52. https://doi.org/10.17116/jnevro20171176147-52

Barbey, A. K., Colom, R., & Grafman, J. (2012). Distributed neural system for emotional intelligence revealed by lesion mapping. Social cognitive and affective neuroscience, 9(3), 265-272. https://doi.org/10.1093/scan/nss124

Blasi, G., Bianco, L. L., Taurisano, P., Gelao, B., Romano, R., Fazio, L., ... & Masellis, R. (2009). Functional variation of the dopamine D2 receptor gene is associated with emotional control as well as brain activity and connectivity during emotion processing in humans. Journal of Neuroscience, 29(47), 14812-14819. https://doi.org/10.1523/JNEUROSCI.3609-09.2009

Downey, L. A., Johnston, P. J., Hansen, K., Schembri, R., Stough, C., Tuckwell, V., & Schweitzer, I. (2008). The relationship between emotional intelligence and depression in a clinical sample. The European Journal of Psychiatry, 22(2), 93-98. http://scielo.isciii.es/pdf/ejpen/v22n2/original5.pdf

Forero D. A., Pereira-Morales A. J., González-Giraldo Y. (2016). Molecular Genetics and Human Behavior. In Reference Module in Neuroscience and Biobehavioral Psychology. https://doi.org/10.1016/b978-0-12-809324-5.06489-0

Freudenthaler, H. H., Fink, A., & Neubauer, A. C. (2006). Emotional abilities and cortical activation during emotional information processing. Personality and Individual Differences, 41(4), 685-695. https://doi.org/10.1016/j.paid.2006.02.016

Gadow, K. D., Pinsonneault, J. K., Perlman, G., & Sadee, W. (2014). Association of dopamine gene variants, emotion dysregulation and ADHD in autism spectrum disorder. Research in developmental disabilities, 35(7), 1658-1665. https://doi.org/10.1016/j.ridd.2014.04.007

Gohier, B., Senior, C., Radua, J., El-Hage, W., Reichenberg, A., Proitsi, P., ... & Surguladze, S. A. (2014). Genetic modulation of the response bias towards facial displays of anger and happiness. European Psychiatry, 29(4), 197-202. https://doi.org/10.1016/j.eurpsy.2013.03.003

Heilman, K. M., Scholes, R., & Watson, R. T. (1975). Auditory affective agnosia. Disturbed comprehension of affective speech. Journal of Neurology, Neurosurgery & Psychiatry, 38(1), 69-72. https://dx.doi.org/10.1136/jnnp.38.1.69

Iumatov, E. A. (1995). Neuromediator integration of emotional excitation and mechanisms of stress resistance. Vestnik Rossiiskoi akademii meditsinskikh nauk, (11), 9-16. https://europepmc.org/abstract/med/8527992

Jaušovec, N., & Jaušovec, K. (2005). Differences in induced gamma and upper alpha oscillations in the human brain related to verbal/performance and emotional intelligence. International Journal of Psychophysiology, 56(3), 223-235. https://doi.org/10.1016/j.ijpsycho.2004.12.005

Jaušovec, N., Jaušovec, K., & Gerlič, I. (2001). Differences in event-related and induced EEG patterns in the theta and alpha frequency bands related to human emotional intelligence. Neuroscience Letters, 311(2), 93-96. https://doi.org/10.1016/S0304-3940(01)02141-3

Karabuschenko N. B., Khvorova E. M. (2017). Interethnic features of facial expression recognition. Vestnik Mininskogo Universiteta, 3, 14.

Kemp, A. H., Cooper, N. J., Hermens, G., Gordon, E., Bryant, R., & Williams, L. M. (2005). Toward an integrated profile of emotional intelligence: Introducing a brief measure. Journal of Integrative Neuroscience, 4(01), 41-61. https://doi.org/10.1142/S0219635205000677

Killgore, W. D., & Yurgelun-Todd, D. A. (2007). Neural correlates of emotional intelligence in adolescent children. Cognitive, Affective, & Behavioral Neuroscience, 7(2), 140-151. https://doi.org/10.3758/CABN.7.2.140

Kislova O. O., Rusalova M. N. (2009). EEG Frequency-Amplitude Characteristics of Successful Recognition of Emotion in Speech. Zh Vyssh Nerv Deiat I P Pavlova, 59, 281–288

Kislova, O. O., & Rusalova, M. N. (2008). Correlation between the EEG coherence and recognition of emotions in speech. Rossiiskii fiziologicheskii zhurnal imeni IM Sechenova, 94(6), 650-660. https://europepmc.org/abstract/med/18727374

Kniazev, G. G., Mitrofanova, L. G., & Bocharov, A. V. (2013). Emotional intelligence and oscillatory responses on the emotional facial expressions. Fiziologiia cheloveka, 39(4), 41-48. https://europepmc.org/abstract/med/25486829

Koven, N. S., & Demers, L. A. (2014). Discordant peripheral levels of brain-derived neurotrophic factor and serotonin are associated with enhanced emotional intelligence in men. Psychology & Neuroscience, 7(4), 609. https://dx.doi.org/10.3922/j.psns.2014.4.21

Krueger, F., Barbey, A. K., McCabe, K., Strenziok, M., Zamboni, G., Solomon, J., ... & Grafman, J. (2009). The neural bases of key competencies of emotional intelligence. Proceedings of the National Academy of Sciences, 106(52), 22486-22491. https://doi.org/10.1073/pnas.0912568106

Kucharska-Pietura, K., Phillips, M. L., Gernand, W., & David, A. S. (2003). Perception of emotions from faces and voices following unilateral brain damage. Neuropsychologia, 41(8), 1082-1090. https://doi.org/10.1016/S0028-3932(02)00294-4

Lau, J. Y., Goldman, D., Buzas, B., Hodgkinson, C., Leibenluft, E., Nelson, E., ... & Ernst, M. (2010). BDNF gene polymorphism (Val66Met) predicts amygdala and anterior hippocampus responses to emotional faces in anxious and depressed adolescents. Neuroimage, 53(3), 952-961. https://doi.org/10.1016/j.neuroimage.2009.11.026

Lin, C. H., Tseng, Y. L., Huang, C. L., Chang, Y. C., Tsai, G. E., & Lane, H. Y. (2013). Synergistic effects of COMT and TPH2 on social cognition. Psychiatry: Interpersonal & Biological Processes, 76(3), 273-294. https://doi.org/10.1521/psyc.2013.76.3.273

Mandel, A. L., Ozdener, H., & Utermohlen, V. (2009). Identification of pro-and mature brain-derived neurotrophic factor in human saliva. Archives of oral biology, 54(7), 689-695. https://doi.org/10.1016/j.archoralbio.2009.04.005

Mayer, J. D., DiPaolo, M., & Salovey, P. (1990). Perceiving affective content in ambiguous visual stimuli: A component of emotional intelligence. Journal of personality assessment, 54(3-4), 772-781. https://doi.org/10.1080/00223891.1990.9674037

Mikolajczak, M., Bodarwé, K., Laloyaux, O., Hansenne, M., & Nelis, D. (2010). Association between frontal EEG asymmetries and emotional intelligence among adults. Personality and Individual Differences, 48(2), 177-181. https://doi.org/10.1016/j.paid.2009.10.001

Nagel, M., Jansen, P. R., Stringer, S., Watanabe, K., de Leeuw, C. A., Bryois, J., ... & Linnasrsson, S. (2017). GWAS Meta-analysis of neuroticism (N= 449,484) identifies novel genetic loci and pathways. bioRxiv, 184820. https://doi.org/10.1101/184820

Naimanova A. V., Adushinova A. G. (2017). Features of emotional intelligence of different ethnocultures representatives. Sotsialnaia kompetentnost, 5, 51-57.

Pishghadam, R., & Sahebjam, S. (2012). Personality and emotional intelligence in teacher burnout. The Spanish journal of psychology, 15(1), 227-236. https://doi.org/10.5209/rev_SJOP.2012.v15.n1.37314

Popova, N. K., Ilchibaeva, T. V., & Naumenko, V. S. (2017). Neurotrophic Factors (BDNF and GDNF) and the Serotonergic System of the Brain. Biochemistry (Moscow), 82(3), 308-317. https://doi.org/10.1134/S0006297917030099

Raz, S., Dan, O., Arad, H., & Zysberg, L. (2013). Behavioral and neural correlates of emotional intelligence: An Event-Related Potentials (ERP) study. Brain research, 1526, 44-53. https://doi.org/10.1016/j.brainres.2013.05.048

Ross, E. D. (1981). The aprosodias: Functional-anatomic organization of the affective components of language in the right hemisphere. Archives of Neurology, 38(9), 561-569. https://doi.org/10.1001/archneur.1981.00510090055006

Rusalova, M. N., Kislova, O. O., & Sidorova, O. A. (2010). Speech recognition in the norm and pathology. Rossiiskii fiziologicheskii zhurnal imeni IM Sechenova, 96(1), 3-12. https://europepmc.org/abstract/med/20297688

Santesso, L. D., Dana, L. R., Schmidt, L. A., & Segalowitz, S. J. (2006). Frontal electroencephalogram activation asymmetry, emotional intelligence, and externalizing behaviors in 10-year-old children. Child psychiatry and human development, 36(3), 311-328. https://doi.org/10.1007/s10578-005-0005-2

Schneider, M., Van der Linden, M., Glaser, B., Rizzi, E., Dahoun, S. P., Hinard, C., ... & Eliez, S. (2012). Preliminary structure and predictive value of attenuated negative symptoms in 22q11. 2 deletion syndrome. Psychiatry Research, 196(2-3), 277-284. https://doi.org/10.1016/j.psychres.2011.08.017

Seron, X., Van der Kaa, M. A., Vanderlinden, M., Remits, A., & Feyereisen, P. (1982). Decoding paralinguistic signals: effect of semantic and prosodic cues on aphasics’ comprehension. Journal of Communication Disorders, 15(3), 223-231. https://doi.org/10.1016/0021-9924(82)90035-1

Simonov, P. V., Pigareva, M. L., & Brazovskaia, F. A. (1978). Avoidance reactions to a partner’s pain stimulation in rats with local brain damage. Zhurnal vysshei nervnoi deiatelnosti imeni IP Pavlova, 28(3), 514-521. https://europepmc.org/abstract/med/676499

Thompson, J. M., SONUGA‐BARKE, E. J., Morgan, A. R., Cornforth, C. M., Turic, D., Ferguson, L. R., ... & Waldie, K. E. (2012). The catechol‐O‐methyltransferase (COMT) Val158Met polymorphism moderates the effect of antenatal stress on childhood behavioural problems: longitudinal evidence across multiple ages. Developmental Medicine & Child Neurology, 54(2), 148-154. https://doi.org/10.1111/j.1469-8749.2011.04129.x

Vernon, P. A., Petrides, K. V., Bratko, D., & Schermer, J. A. (2008). A behavioral genetic study of trait emotional intelligence. Emotion, 8(5), 635. https://dx.doi.org/10.1037/a0013439

Williams, L. M., Gatt, J. M., Grieve, S. M., Dobson-Stone, C., Paul, R. H., Gordon, E., & Schofield, P. R. (2010). COMT Val108/158Met polymorphism effects on emotional brain function and negativity bias. Neuroimage, 53(3), 918-925. https://doi.org/10.1016/j.neuroimage.2010.01.084

Wunderlich, A., Ziegler, W., & Geigenberger, A. (2003). Implicit processing of prosodic information in patients with left and right hemisphere stroke. Aphasiology, 17(9), 861-879. https://doi.org/10.1080/02687030344000283




How to Cite

Kosonogov , V., Vorobyeva , E., Kovsh , E., & Ermakov , P. (2019). A REVIEW OF NEUROPHYSIOLOGICAL AND GENETIC CORRELATES OF EMOTIONAL INTELLIGENCE. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 7(1), 137–142. https://doi.org/10.5937/ijcrsee1901137K



Most read articles by the same author(s)